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Abstract

We have performed a statistical evaluation of 5100 experimental values of the bend strength of test pieces from a serial production of alumina
products. The Weibull distribution was compared to three other, commonly known, 2-parametric distributions in order to reveal which of them best
matches the experiments. The maximum-likelihood method was used to evaluate the corresponding parameters, and then a Q–Q  plot was used for
all the statistics. We confirmed that the Weibull distribution describes the experimental strengths most accurately.
© 2011 Elsevier Ltd. All rights reserved.
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1.  Introduction

The scatter in the values of strength measured in typical
mechanical tests for brittle materials, such as ceramics, is usu-
ally described by the Weibull statistical distribution, either two-
or three-parametric, or the one corresponding to more fracture
modes.1–6 The reliability of the Weibull distribution has been
theoretically and experimentally investigated for a very broad
range of conditions.7–23 One of the typical experimental prob-
lems is that the cost limits the number of testing pieces for the
strength measurements, which makes the prediction of the free
parameters in the chosen distribution less reliable.

Different calculation procedures are used to evaluate the
Weibull parameters (or the corresponding parameters in other
statistical distributions), the most popular being the linear-
regression (LR) method and the maximum-likelihood (ML)
method. Each of these methods has its benefits and drawbacks.7,8

Monte–Carlo simulations are a very useful tool for predicting
the reliability of various estimation methods and their optimiza-
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tion, particularly when they are combined with experiments.
These simulations indicate that all of the estimation methods,
such as LR and ML, show some biasing in the estimated param-
eters, depending on the size of the test group and the adaptation
and optimization of the particular method. The maximum-
likelihood method is a standard method due to its efficiency
and its ease of application when censored failure populations
are encountered.24 Since this method has proved to be par-
ticularly suitable, several variants of it have been proposed
and tested, for instance, the generalized maximum-likelihood
method (GMLE), which uses various rank estimators.25–27 In
addition, some authors tested the idea of dividing several mea-
sured strength values of ceramic materials into random, smaller
subsets in order to study the corresponding statistical distribution
of the Weibull parameters.4,5,8–10

However, the justification for the use of the Weibull distri-
bution has been addressed by many authors and several other
distributions have been proposed, including the normal (Gaus-
sian), log-normal and Gamma distributions.2,28–31 The Weibull
distribution cannot be favored with certainty as compared, for
instance, with the Gaussian distribution, when a limited number
of samples are subjected to the strength test.29 The distribution
may be changed, for instance, in non-homogeneous materials,
such as composites and porous ceramics, due to the different
mechanisms, e.g., residual stresses.
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When the amount of available experimental strength data is
modest, it is usually impossible to state with certainty that the
Weibull distribution is correct, and not, for instance, the Gaus-
sian. Different methods offer some reliability factors, which
enable a quantitative comparison of the successfulness when
using different distributions for the same set of experimental
data. An example is the correlation coefficient in the linear
regression method, which measures the deviations of the data
points from a straight line in the appropriate linearized depen-
dence of the probability on the strength.

In statistics, P−P  plots (P  standing for the cumulative proba-
bility) or Q−Q  plots (Q  standing for the quantile) are often used
to obtain a visual impression of how well the known theoretical
distribution fits the experimental data.32,33 A good match of plot
points to the 45◦ line indicates a good agreement between the
experiment and the theory for both types of plots (the physical
units on both axes correspond to the probabilities in the case of
the P–P  plots, or the measured quantity in the case of the Q–Q
plots).

In our previous paper we analyzed a large quantity of
Monte–Carlo data and estimated the Weibull parameters using
the ML method.34 We combined theoretical results with the
results of our measurements of the four-point bend strength of
96% alumina samples from a serial production (1000 strength
values). We focused mostly on the problem of the reliability of
the estimation of the Weibull modulus for a small number of
samples. In particular, we confirmed the log-normal distribution
of the estimated values of the Weibull modulus when a large set
of data is randomly divided into small subsets.

In this work we make a statistical evaluation of 5100 exper-
imental values of the bend strength of test pieces from a serial
production of alumina products. We use the ML method for an
estimation of the statistical parameters together with a Q–Q-plot
to show that the Weibull distribution best fits the experimental
data.

2. Experimental

Ceramic samples were fabricated using the low-pressure
injection-molding technique in the company Hidria AET d.o.o.
for quality-control purposes. The strengths of 5100 sam-
ples in the shape of a rectangular bar with dimensions of
4 mm ×  3 mm ×  45 mm, collected from 425 batches, were used
in the study (there were 12 broken test pieces in each batch). The
material was high alumina ceramic with a density of 0.95 of the
theoretical value. The ceramic was prepared by sintering for 3 h
at 1640 ◦C. The feedstock for injection molding was made from
a powder containing 96% alumina (d10 = 0.7 �m, d50 = 1.9 �m,
d10 = 4.2 �m) and 4% silica-based material (d10 = 0.7 �m,
d50 = 4.8 �m, d90 = 9.5 �m), which served as a liquid-phase sin-
tering aid. The numbers in brackets correspond to the particle
diameters, where the cumulative size distribution reaches values
of 10%, 50% and 90%, respectively. The material is primarily
used for electrical insulating purposes and not high-strength-
demanding tasks and is labeled as a “middle-strength” alumina
ceramic in the company.

The strength was calculated from the breaking force in a
4-point bending test35 using the equation:

σ = 3F (LS −  LL)

2ah2 (1)

where σ  is the bending strength, F  is the breaking force,
LS = 40 mm is the outer support span, LL = 20 mm is the load
span, a  = 4 mm is the specimen width, and h = 3 mm is the spec-
imen thickness.

3. Statistical  model  and  graphical  representation

Our statistical variable is the four-point bend strength (called
strength for brevity), denoted by the symbol σ. In our calcu-
lations we deal with both probability distribution functions: the
probability density function p(σ), and the cumulative probability
function, also called the unreliability function, which is defined
as: P(σ) = ∫ σ

0 p(x) dx. We test the statistical compatibility
of the experimental data with the four different 2-parametric
distribution functions: (1) Weibull, (2) normal (Gaussian), (3)
log-normal, and (4) Gamma. The exact mathematical formulae
are described in Section 3.2.

3.1. The  procedure  to  estimate  the  goodness  of  fit

The goodness of fit for a specific distribution was estimated
from probability plots, where the experimental data is plotted
against values calculated with a theoretical distribution. This is
a graphical technique for assessing how well a certain distri-
bution can describe experimental data. The graphical method,
where all the experimental data are plotted, gives an important
qualitative estimation about how well a particular distribution
describes the data. The visualization of all the strength data in
the evaluation of the distribution reliability is more illustrative
and trustworthy than merely giving a number that indicates the
level of correspondence of the theoretical distribution to the real
experimental data.

The detailed procedure for constructing probability plots for
each considered statistical distribution consists of the following
steps:

(a) The best fitting parameters are determined for each distribu-
tion by using the maximum-likelihood method. This is done
in the following way. The (N  = 5100) measured strength val-
ues, σi, i = 1 to N, are inserted into the probability density
function p(a,b; σ), where a  and b  stand for the corresponding
free parameters of the distribution, e.g., a ≡  m  and b  ≡  σ0 for
the Weibull distribution, etc. The ML procedure maximizes
the following function with respect to the free parameters a
and b:

Y =  ln

(
N∏

i=1

p(a,  b; σi)

)
=

N∑
i=1

ln p(a,  b; σi) (2)

by setting to zero the derivatives of Y  with respect to a  and
b. The detailed procedure is different for each distribution.
The equations that were used to calculate each parameter for
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