

Available online at www.sciencedirect.com

ScienceDirect

Journal of the European Ceramic Society 34 (2014) 2111–2115

www.elsevier.com/locate/jeurceramsoc

Growth and optical properties of LiF/LaF₃ eutectic crystals

Shunsuke Kurosawa ^{a,b,*}, Akihiro Yamaji ^a, Yuui Yokota ^a, Yoshisuke Futami ^c, Kei Nishimoto ^a, Noriaki Kawaguchi ^d, Kentaro Fukuda ^d, Akira Yoshikawa ^{a,b}

^a Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
^b New Industry Creation Hatchery Center (NICHe), 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
^c Department of Biological and Chemical Systems Engineering, Kumamoto National College of Technology, 2627 Hirayamashinmachi, Yatsushiro, Kumamoto

866-8501, Japan

^d Tokuyama Cooperation, 3-2-1 Kasumiagseki, Chiyoda-ku, Tokyo 100-8983, Japan

Available online 12 March 2014

Abstract

Neutron imaging devices employing a scintillator can be used in various fields, and eutectic crystals can be suitable for the imaging with a fine position resolution of a few hundred micrometers. Since LiF and LaF₃ have different refractive indexes of 1.41 and 1.64 at 300 nm, respectively, the eutectic crystal is expected to behave as a scintillator with light guiding properties. Thus, the optical properties of Ce-doped LiF/LaF₃ eutectic crystal grown by micro-pulling down method were investigated. The light output of LiF/Ce:LaF₃ eutectic crystal was relatively small. The emission peaks at 300 nm originating from Ce³⁺ of 5d–4f transition were observed under excitation by UV photons and 5.5 MeV alpha rays. Moreover, the photo-luminescence decay time of Ce-doped LiF/LaF₃ eutectic crystal was estimated to be 17 ± 1 ns. © 2014 Elsevier Ltd. All rights reserved.

Keywords: Eutectic crystal; Neutron scintillator; LaF3; LiF

1. Introduction

Neutron detection and imaging devices are (expected to be) used in various fields such as crystallography, homeland security, etc. 1,2 Since 3 He has an unusually large cross-section for neutron capture (approximately 5300 barns for thermal neutrons 3), a 3 He-gaseous detector has been used for neutron detection. 3,4 However, the 3 He sources are being depleted, and an alternative suitable nuclei are searched for. Then several scintillator crystals containing elements with high-cross-section nuclei, like 10 B ($\sim\!3800\,\mathrm{barns}^3$), 6 Li ($\sim\!940\,\mathrm{barns}^3$), have been investigated for detection of thermal neutrons. $^{5-8}$ In addition, some groups have studied neutron imaging with a scintillator. $^{9-11}$

When ⁶Li undergoes a nuclear reaction after absorption of a thermal neutron, it disintegrates into an alpha particle and a triton (³H₁) as follows:

$$^{6}\text{Li} + n \rightarrow {}^{3}\text{H}_{1} + \alpha + 4.78 \,\text{MeV}$$
 (1)

E-mail address: kurosawa@imr.tohoku.ac.jp (S. Kurosawa).

the 4.78-MeV energy, called Q-value, is distributed between the triton (2728 keV) and the alpha particle (2055 keV). Due to these particles, scintillation light is emitted. On the other hand, 10 B undergoes the following reactions:

$$^{10}\text{B} + n \rightarrow 7\text{Li}(0.8 \,\text{MeV}) + \alpha(1.5 \,\text{MeV}) + \gamma(0.5 \,\text{MeV})$$
 (2)

and

$$^{10}\text{B} + n \to 7 \,\text{Li}(1 \,\text{MeV}) + \alpha(1.8 \,\text{MeV})$$
 (3)

where the branching ratios of (2) and (3) are 94 and 6%, respectively. Although ¹⁰B has a larger cross section for a thermal neutron than ⁶Li, the *Q*-value and the alpha-ray energies produced by reactions (2) or (3) are twice as small as that of the reaction (1). Moreover, gamma rays can be generated from the (2) as a noise. Thus, signal-noise-ratio for ⁶Li-containing scintillator is expected to be better than that of ¹⁰B-containing scintillator. We have investigated neutron scintillators containing ⁶Li, such as Ce-doped LiCaAlF₆, ⁸ which had good signal-noise-ratios (alpha–gamma ratio). Since fluoride crystals have generally low melting points with respect to the other crystals such as oxide crystals, they can be produced with a lower cost.

^{*} Corresponding author. Present address: Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan. Tel.: +81 22 217 2214; fax: +81 22 217 2217.

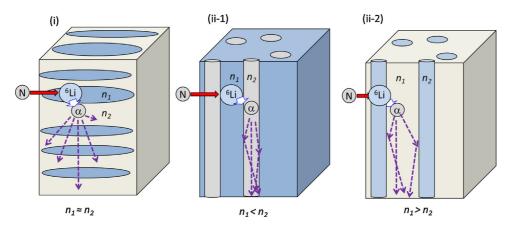


Fig. 1. Schematic view of eutectic scintillation crystals. n_i (i = 1, 2) denote the refractive indexes. (i) normal type ($n_1 \approx n_2$), (ii) light-guide type, $n_1 < n_2$ and $n_1 > n_2$ for (ii-1) and (ii-2), respectively. Dotted arrows denote scintillation light.

In order to readout position-sensitive signals (electrons) in the gaseous neutron detector, micro pattern gaseous detectors with an anode pitch of a few hundred micrometers are used. As a result, the gaseous type has a position resolution of a few hundred micrometers. Meanwhile, the scintillation type has worse position resolution, because a scintillation array camera has a pixel pitch of more than \sim 1 mm. Even if a monolithic crystal is coupled to a fine structure photo detector, like a Charge Coupled Device (CCD) camera, the scintillation light would be spread in the crystal.

Recently, a light-guide scintillator based on eutectic crystals consisting of components with different refractive indexes has been reported for X-ray imaging. ¹² This needle-like shape crystal scintillator was grown by micro-pulling (μ -PD) down method. Thus, we decided to study $^6\mathrm{Li}$ -containing eutectic crystals for neutron detector in this paper.

Fig. 1 shows a schematic view of position-sensitive eutectic crystals for neutron scintillator: (i) normal type (Lamellar structure) and (ii) cylinder type consisting of two components with different refractive indexes, respectively. The latter type has a cylinder (tube)-shape component. When this cylinder part has a higher refractive index than the other component, the scintillation light can be guided through the cylinder like in an optical fiber cable (Fig. 1(ii-1)). Both types consist of LiF as a neutronalpha ray converter and an emitter excited by the resulting alpha rays. Using Monte Carlo method including Bethe-Bloch formula, the stopping range of 2055-keV alpha ray (distance of passing through matter until their energy become to zero) is 5.5 μm in the LiF crystal, therefore the Lamellar pitch or phase width should be less than 5.5 μm so that the alpha ray can reach the emitter zone.

LiF and LaF₃ have refractive indexes of 1.41 and 1.64 at $300 \, \mathrm{nm^{13,14}}$ therefore LaF₃ is expected to guide or separate the scintillation light into position-sensitive photo detectors. In addition, Moses et al. reported that 1-mol% Ce doped LaF₃ has a scintillation light output of 440 photons/MeV excited by gamma rays, ¹⁵ thus, Ce:LaF₃ can be also used as emitter. Although the light output of Ce:LaF₃ is smaller when compared to well-known fluoride scintillators such as CaF₂, BaF₂, this material has a larger refractive index (n) than CaF₃ (n = 1.46 at 300 nm),

BaF₂(n = 1.51 at 300 nm). In this paper, first we report the structure of LiF/LaF₃ eutectic crystals grown by the μ -PD method, and then we show the optical properties of Ce-doped LiF/LaF₃ eutectic crystals in order to study its feasibility for the neutron scintillator.

2. Materials and methods

Pure and Ce-doped LiF/LaF₃ eutectic crystals were grown by the μ -PD method (details of the μ -PD method are described in Refs. 16,17). Here the eutectic point of LiF/LaF₃ system is LiF: LaF₃ = 83.8: 16.2 at approximately 770 °C, 18 so the initial composition was (LiF)_{83.8}{ $(La_{1-x}, Ce_x)F_3$ }_{16.2} (x = 0 or 0.01). The powders of the crystal materials (LiF, LaF₃ and CeF₃) were of 99.99% purity, and the atmosphere was a gas mixture of Ar:CF₄ in a pressure ratio of 97:3 at 1 atm (sealed). A Pt wire was used as the seed, and the pulling rates were 0.1, 0.5, 1.0, 2.0 mm/min for pure LiF/LaF₃ eutectic crystals. In order to confirm that a phase width (Lamellar pitch) is of less than approximately 5.5 µm, field emission scanning Electron Microscope/Electron Probe Micro Analyzer (FE-SEM/EPMA, JEOL, JXA-8530F,10 kV, 20 nA) was used. After checking, 1-mol% Ce-doped LiF/LaF₃ eutectic crystals were grown by the μ-PD method with an optimized pulling rate (we decided the rate of 0.5 mm/min). In order to check the phase of the obtained crystals, powder X-ray diffraction analysis was performed from 20° to 80° using a diffractometer (RIGAKU, RINT2000). The Xray source was using $CuK\alpha$ line with an accelerating voltage of 40 kV, and tube current of 40 mA.

We investigated some optical properties of the samples after cutting and polishing; (i) Transmittance was measured with a spectrophotometer (JASCO, V-530), (ii) photo-luminescence spectra (emission and excitation) were measured with a spectrofluorometer (Edinburgh Instruments, FLS920), (iii) photo-luminescence decay curves were obtained with the spectrofluorometer and a Flash lamp (Edinburgh Instruments, nF900) (iv) the radio-luminescence spectra at room temperature were measured using the same spectrofluorometer and 5.5-MeV alpha rays (241 Am) as the excitation source.

Download English Version:

https://daneshyari.com/en/article/1474855

Download Persian Version:

https://daneshyari.com/article/1474855

Daneshyari.com