

Available online at www.sciencedirect.com

SciVerse ScienceDirect

Journal of the European Ceramic Society 33 (2013) 1769-1778

www.elsevier.com/locate/jeurceramsoc

High-power properties of piezoelectric hard materials sintered at low temperature for multilayer ceramic actuators

So-Yeon Yoo^a, Jong-Yoon Ha^b, Seok-Jin Yoon^a, Ji-Won Choi^{a,*}

^a Electronic Materials Research Center, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea ^b Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD 20742, USA

Received 8 August 2012; received in revised form 7 February 2013; accepted 11 February 2013 Available online 16 March 2013

Abstract

0.05Pb(Mn_{1/3}Sb_{2/3})O₃-0.05Pb(Al_{1/2}Nb_{1/2})O₃-0.9Pb(Zr_{0.48}Ti_{0.52})O₃ (PMS-PAN-PZT) high power piezoelectric system with both La₂O₃ as a hard-ener and CuO as a low sintering agent had been synthesized at 900 °C for 2 h. When La₂O₃ doping of the main composition went over 0.5 wt%, the mixed tetragonal and rhombohedral perovskite structure changed to pure rhombohedral perovskite structure. In case of the CuO, 1.0 and 1.5 wt% CuO content significantly improved the sinterability of the PMS-PAN-PZT system processed at 900 °C for 2 h. When La₂O₃ and CuO co-doped in PMS-PAN-PZT ceramics, piezoelectric constants (d_{33}), quality factor (Q_m), electromechanical coupling factor (k_p) and dielectric constant (ϵ_3^T/ϵ_0) of the piezoelectric ceramics sintered at 900 °C for 2 h were optimized, such as 336 pC/N, 841, 60%, and 1358, respectively. New developed piezoelectric materials are promising for high power multilayer ceramic actuators.

Keywords: Low temperature sintering; CuO; La₂O₃; PMS-PAN-PZT; Multilayer ceramic actuators

1. Introduction

Piezoelectric ceramics are currently used in applications such as actuators, ultrasonic motors and piezoelectric transformers. Lead zirconate titanate (PZT) systems have been widely modified by doping method. 1,2 Recently, high-power piezoelectric ceramics has been a popular topic due to their increasing applications in piezoelectric actuators and transformers.³ Particularly, multilayer piezoelectric actuators and transformers have been studied for their high-power density.⁴ Co-fired multilayer piezoelectric actuators have long been demonstrated for a wide variety of electromechanical applications requiring precision positioning over short time scales.⁵ In general, multilayer devices fabricated with co-firing pure Ag as an internal electrode instead of Ag-Pd alloy promise to reduce the mass production cost. So, the piezoelectric ceramics should be sintered at 900 °C or below for multilayer piezoelectric devices. In addition, when piezoelectric ceramics are sintered at 900 °C or below, the volatilization of PbO can be suppressed. In

order to reduce the sintering temperature, various methods such as nano powder sintering, ⁶ liquid-phase sintering, ^{7,8} and surface modification method ⁹ were implemented in PZT piezoelectric systems.

Recently, some ternary or quaternary high-power piezoelectric ceramics were obtained by adding perovskite structure relaxors into the PZT system, such as PZT–PMS, 10 PZT–PMN, 11 PZT–PMS–PMN, 12 and PZT–PMS–PZN. 13 0.05Pb(Mn_{1/3}Sb_{2/3})O₃–0.05Pb(Al_{1/2}Nb_{1/2})O₃–0.9Pb(Zr_{0.48} Ti_{0.52})O₃ (PMS–PAN–PZT) was selected because of typical hard piezoelectric characters (d_{33} = 312 pC/N, $Q_{\rm m}$ = 1351, and $k_{\rm p}$ = 56% sintered at 1175 °C) to apply for high-power piezoelectric actuators. This composition, however, is not satisfactory for multilayer actuators with Ag electrode due to high sintering temperature (over 1150 °C) and low electromechanical coupling factor, as well.

In case of the low-sintering temperature ceramics, Zhilun et al. Pb_{1-x}Cd_x(Ni_{1/3}Nb_{2/3})_yZr_zTiWO₃ + g_1 wt% MnO₂ + g_2 wt% SiO₂ + 1 wt% Pb₃O₄ compositions. The optimized piezoelectric properties of the ceramics sintered at 900 °C were d_{33} = 400 pC/N, $Q_{\rm m}$ = 1000, and $k_{\rm p}$ = 61%. These piezoelectric properties are the world best, but this composition includes a hazardous element

^{*} Corresponding author. Tel.: +82 2 958 5556; fax: +82 2 958 6720. *E-mail address*: jwchoi@kist.re.kr (J.-W. Choi).

like cadmium (Cd). Therefore, this material cannot apply to piezoelectric industry and devices. Recently, Pb(Zr_{0.52}Ti_{0.48})O₃–Pb(Mg_{1/3}Nb_{2/3})O₃–Pb(Zn_{1/3}Nb_{2/3})O₃ + 0.2 wt% CuO system¹⁵ was reported. Even though this system had 1645 of $Q_{\rm m}$ value, d_{33} (280 pC/N) and $k_{\rm p}$ (53%) values were relatively low and the 920 °C of the sintering temperature was slightly higher than 900 °C. One more required property in a piezoelectric industry field is that electromechanical coupling factor ($k_{\rm p}$) value is at least 60% to apply high power ceramic actuators.

In this study, various amounts of CuO and La₂O₃ were added in PMS–PAN–PZT ceramic to decrease the sintering temperature and to further improve piezoelectric properties such as d_{33} , $Q_{\rm m}$, and $k_{\rm p}$. The crystal structure, the micro-morphology and the piezoelectric properties of PMS–PAN–PZT ceramics with various dopants will be discussed.

2. Experimental procedure

The composition of the ceramics used in this study is $0.05Pb(Mn_{1/3}Sb_{2/3})O_3-0.05Pb(Al_{1/2}Nb_{1/2})O_3-0.9Pb(Zr_{0.48})$ $Ti_{0.52}$)O₃ (PMS-PAN-PZT) + La₂O₃ + CuO. All samples were prepared by conventional solid state reaction method. The raw materials are PbO (99.9% Kosudo, Japan), MnO (99% Aldrich, USA), Sb₂O₅ (99.9% Aldrich, USA), Al₂O₃ (99.9% Aldrich, USA), Nb₂O₅ (99.9% Aldrich, USA), ZrO₂ (99% Aldrich, USA), TiO₂ (99.8% Aldrich, USA), La₂O₃ (99.99% Aldrich, USA) and CuO (99% Aldrich, USA). The starting materials were mixed in deionized (DI) water for 24 h by ball milling process. The mixed powder was dried and calcined at 850 °C for 2 h in air. The calcined powder was milled again with the additives, La₂O₃ (0-1 wt%) and CuO (0.5-6 wt%). The powders were dried and pressed into discs of 18 mm in diameter and 2 mm thickness under uni-axial pressure of 1000 kg/cm². The specimens were sintered at various temperatures (875-1200 °C) for 2 h with a 5 °C/min rate of heating and cooling in an alumina crucible. For the electrical measurements, the specimens were lapped into 1 mm thickness and then metallized with silver paste at 600 °C for 10 min. The piezoelectric ceramics were poled under a dc field of 5 kV/mm in silicon oil at 120 °C for 30 min. The piezoelectric properties of all ceramics were measured after 24 h of the poling process.

Bulk densities of the sintered ceramics were measured by the Archimedes method. Piezoelectric properties such as mechanical quality factor $(Q_{\rm m})$ and electromechanical coupling factor $(k_{\rm p})$ were measured by an impedance analyzer (HP 4294A, USA) and calculated by a resonance and anti-resonance method and dielectric constant $(\varepsilon_3^{\rm T}/\varepsilon_0)$ of the piezoelectric ceramics measured by a network analyzer (HP3577A, USA) at 1 kHz. Piezoelectric constants (d_{33}) of the specimens were obtained by a piezo- d_{33} meter (ZJ-3A, Institute of Acoustics Academic Sinica). The crystal structures of the piezoelectric ceramics were examined by a powder X-ray diffractometer (XRD, Model X'Pert PRO Panalytical, Holland) with Cu K α radiation. The microstructure of the piezoelectric ceramics was observed using a scanning electron microscope (SEM, Model FEI XL30, Philips, Holland).

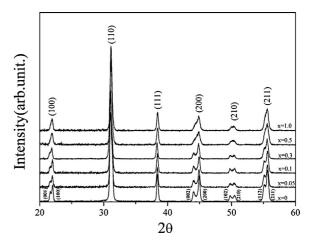


Fig. 1. XRD patterns of PZT–PAN–PMS + x wt% La₂O₃ sintered at 1175k $^{\circ}$ C for 2 h.

3. Results and discussion

3.1. The effect of La₂O₃ dopant

Fig. 1 shows the effect of La₂O₃ dopants (0–1.0 wt%) on phase formation of the PMS-PAN-PZT ceramics sintered at 1175 °C. When La₂O₃ was added up to 0.3 wt%, both tetragonal and rhombohedral perovskite phases coexisted in the PMS-PAN-PZT crystal. However, when La₂O₃ dopants were increased over 0.5 wt%, the coexisted phases changed to pure rhombohedral perovskite structure. Secondary phase peaks were not detected through all specimens. This result was observed from the combination of the (200) and (002) peaks with the increase of La₂O₃ contents. The transformation from tetragonal to rhombohedral structure can be attributed to the fact that La₂O₃ in the A-site induces lattice distortion that reduce the cell volume with shortened a-axis and c-axis in the perovskite structure. 16 In terms of ionic radius, the average size of the La³⁺ ion (1.36 Å, coordinate number/CN: 12) is similar to that of the Pb²⁺ ion (1.49 Å, CN: 12) therefore La³⁺ ions can be a solid

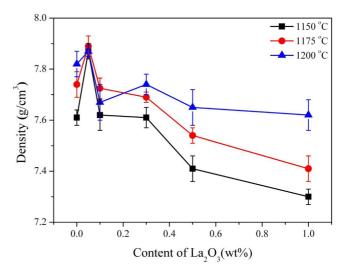


Fig. 2. Bulk density of sintered specimen of PZT-PAN-PMS with various amount of La_2O_3 contents with sintered from 1150 to 1200 °C for 2 h.

Download English Version:

https://daneshyari.com/en/article/1475406

Download Persian Version:

https://daneshyari.com/article/1475406

Daneshyari.com