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h i g h l i g h t s

� Analyzes of uneven absorption of light in photoreactors vs. counteracting diffusion.
� Describes the extremes of optically thick reactors and optically thin reactors.
� Provides a criterion for maximum allowable reaction rate for kinetic experiments.

a r t i c l e i n f o

Article history:
Received 1 November 2013
Received in revised form 13 February 2014
Accepted 19 February 2014
Available online 7 March 2014

Keywords:
Photocatalysis
Slurry reactors
Diffusion limitation
Photon absorption rate
Mathematical modeling

a b s t r a c t

This paper provides a simple criterion to determine when the performance of an unmixed photocatalytic
slurry reactor becomes limited by diffusion. We use a 1D description of the reactor and the two-flux
intensity model to describe the concentration profile in unmixed photoreactors. We show that the effect
of diffusion limitation in optically thick photoreactors is negligible when the Dahmköhler number based
on reactor length is smaller than 0:1 sc, where s is the optical thickness and c is the exponent that
describes how the reaction rate varies with light intensity. For optically thin reactors, in contrast, we find
that the maximum Dahmköhler number scales with the inverse of sc.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

This paper explores the effect of mass-transport limitations on
photocatalytic reactors. Invariably, when mass transport is not fast
enough to keep up with catalysis, the overall reaction rates
changes. Classical examples include the effect of mass transport
outside a catalytic particle [1], mass transport inside a catalyst par-
ticle [2] and axial dispersion in nearly-plug-flow reactors [3]. For
all of these examples, the most useful analysis has been to define
a criterion that teaches when change of the rate due to limitations
exceeds a given threshold, typically 5%. Such an analysis captures
the result of approximate or exact solutions of the governing
component balances in a single criterion that can be used by
experimentalists.

For photocatalytic reactors, such criteria are largely absent. The
situation in photocatalysis is more complex: in addition to a non-
uniform concentration field c, the optical field variable of rele-
vance, i.e. the rate of photon absorption ea by the particles, is also
not constant throughout the reactor. This local volumetric rate of

photon absorption ea appears in the kinetic expression
r ¼ f ðc; eaÞ. Gradients in ea lead to gradients in r, which in turn lead
to concentration gradients, even if the catalyst is homogeneously
dispersed and particle-level gradients can be ignored. Of course,
vigorous stirring can eliminate such concentration gradients, but
we find many examples [e.g. 4,5] of unstirred catalytic perfor-
mance tests that lack forced convection (e.g., stirring) or reported
natural convection (e.g., due to heating by incoming light or elec-
tron/hole recombination).

Herein, we analyze the simplest case of mass transport limita-
tions in such stagnant photoreactors. To keep the problem tracta-
ble, we consider a reactor volume between parallel transparent
plates, with light of intensity I0 entering perpendicularly onto
one side, and we use a two-flux model for the radiation transfer,
as discussed below. This renders the problem one-dimensional.
After a brief formulation of the problem, we define our five-percent
criterion for the onset of mass transport limitations. We then ex-
plore limiting cases of optically very thin and optically very thick
reactors. This gives analytical expressions for the asymptotes of
the criterion, which have the most relevance in catalyst perfor-
mance tests, and we use numerical calculations for the intermedi-
ate regime that is more important in design of efficient
photoreactors. We mention here that there are other aspects of
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unmixed catalyst testing, such as aggregation and sedimentation of
catalyst particles, concurrent possible diffusion limitation of oxy-
gen from the air, and the likely natural convection from heating
on the illuminated side, that are beyond the scope of this paper.

2. Problem formulation

2.1. Local rate of photon absorption

We first describe the local rate of photon absorption inside the
slurry. The simplest analysis just uses the Lambert–Beer equation
that ignores all scattering, resulting in an exponential decay of
the light intensity I inside the reactor, IðxÞ ¼ I0 expð�bxÞ. The local
rate of photon absorption is then given by

ea ¼ �dI=dx ¼ bI0 expð�bxÞ: ð1Þ

where b is the extinction coefficient and x is the spatial coordinate
that varies from x ¼ 0 where the light enters to x ¼ L on the other
end. A useful parameter is the optical thickness s ¼ bL. A reactor
is thick (opaque) if s� 1, indicating that very little light penetrates
through the reactor. Conversely, a reactor is optically thin if s� 1.

Photocatalytic particles not only absorb light but also scatter it.
Scattering occurs in all directions, and the full calculation of the
radiation transfer equation is difficult. The two-flux model [6] sim-
plifies the complex analysis of radiation transfer by assuming that
light only travels in one direction. Light can be absorbed in a differ-
ential slice of thickness dx, or it can be scattered back, or it can pass
through without changing path. The last option occurs because of a
forward-scattering event or because the photon simply does not
interact with any particle. Of course, backscattered light can be
scattered again. For unidirectional light that enters the slurry at
x ¼ 0, this results in

ea ¼ bI0a1 a2ebx þ a3e�bx
� �

ð2Þ

where and a1; a2; a3 are dimensionless coefficients. The term
a2 expðbxÞ in Eq. (2) complicates the analysis, but it turns out that
for thick reactors, a2 is vanishingly small, such that we can write
a pseudo-Lambert–Beer expression that consists only of an expo-
nential decay term. Motegh et al. [7] showed that for optically thick
photoreactors,

ea ¼ bI0½1� qðxÞ�e�bx ð3Þ

where qðxÞ ¼ x½1þ ð1�x2Þ1=2�
�1

is the fraction of lost photons via
backscattering out of the reactor. It depends on the scattering albe-
do x ¼ r=b, where r is a scattering coefficient. Limiting values of x
are x ¼ 0 when particles do not scatter but only absorb and x ¼ 1
when particles only scatter but do not absorb light.

2.2. Kinetics

To use the local rate of photon absorption in a reactor model, we
need a kinetic expression that relates the absorption of photons by
particles to chemical conversion at the particle surface. Many such
expressions have been proposed. Based on microkinetics, one can
derive expressions for the reaction rate per unit slurry volume r
of the form r ¼ k1f ðcÞ½�1þ ð1þ k2eaÞ1=2�, where k1 and k2 are ki-
netic constants and f ðcÞ 2 ½0; 1� describes the surface saturation
as a function of concentration c [8]. Most relevant photocatalytic
processes are pollutant removals at low concentrations, for which
surface saturation does not occur, such that the reaction is ob-
served to be first order. At higher concentration, the observed reac-
tion order can be smaller. The term in the square root describes the
effect of electron–hole recombination. When ea is small, electron–
hole pairs migrate faster to the surface than they are generated,
such that recombination is minimal and r / ea. Conversely,

r / ffiffiffiffiffi
ea
p

when electron–hole pairs are generated much faster than
they can migrate to the surface. Here, we shall use a power-law
expression r ¼ kcaec

a, where the kinetic constant k can be any value
and the kinetic constants 0 < a 6 1 and 0:5 < c < 1, typically.

2.3. Governing component balance

Without convection, the transient component balance for con-
centration cðx; tÞ only has a diffusion term and a reaction term:

@c
@t
¼ D

@2c
@x2 � kec

aca; ð4Þ

with initial condition cðx;0Þ ¼ c0 and no-flux boundary conditions
@c=@xð0; tÞ ¼ @c=@xðL; tÞ ¼ 0. Note that r and ea are defined per unit
volume of the slurry mixture, such that the catalyst concentration is
‘‘hidden’’ in k. We are interested in the concentration profile in the
entire reactor, so we scale length as X ¼ x=L. The concentration falls
from the initial value c0 to zero, so we have for dimensionless con-
centration C ¼ c=c0. The characteristic time is either the diffusion
time L2=D or the reaction time kca�1

0 ðbI0Þc
h i�1

. The ratio of these
characteristic times is the Dahmköhler number

Da ¼ kca�1
0 ðbI0ÞcL2

D
: ð5Þ

The significance of Da is shown in Fig. 1: small values, in Fig. 1(a)
and (b), indicate that gradients are small, whereas for Da� 1 in
Fig. 1(c) and (d), gradients in concentration are significant. We scale
time with the diffusion time, i.e. T ¼ ðL2=DÞ�1

t, and obtain

@C
@T
¼ @2C

@X2 � DaEc
aCa: ð6Þ

where Ea ¼ ea=bI0 is the dimensionless rate of photon absorption.
The scaled initial condition and boundary conditions are
CðX;0Þ ¼ 1; @C=@Xð0; TÞ ¼ @C=@Xð1; TÞ ¼ 0.

3. Criterion for mass transfer limitations

A good instantaneous measure for diffusion limitations is the
difference in concentration between the illuminated end and the
dark end of the reactor. We define a time-averaged version over
the entire conversion as

� ¼
R1

0 ½Cð1; TÞ � Cð0; TÞ�dTR1
0 Cð1; TÞdT

ð7Þ

and define as a criterion for the absence of mass transport limita-
tions � < 0:05. As discussed above, we limit ourselves to
0 < a 6 1. As is generally the case, for first-order reactions the con-
centration asymptotically approaches zero, whereas for fractional-
order reactions ð0 < a < 1Þ the concentration becomes zero in finite
time. From numerical solutions of Eq. (6) where non-negativity of
concentration was ensured, we found for first-order reactions that
we could truncate the integration at T � 10, with negligible change
in � upon continued integration. For fractional-order reactions, �
reaches a finite value when the concentration becomes zero every-
where, which happens in finite time. In other words, � never di-
verges to infinitely for the range of a that we are interested in
and gives a good time-averaged measure for the extent of diffusion
limitations.

The criterion � ¼ 0:05 will depend on the Dahmköhler number
Da, the optical thickness s, the scattering albedo x and the reaction
orders a and c. The problem is well tractable for the first-order
reactions without scattering, i.e. the case a ¼ 1;x ¼ 0, which we
will describe in detail. This will reveal the important features of
the boundary, which we write as �ðDa; scÞ ¼ 0:05, because it will
turn out sc always appear together as a group. Subsequently, we
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