

Journal of the European Ceramic Society 27 (2007) 937-940

www.elsevier.com/locate/jeurceramsoc

Preparation of BiFeO₃ films by wet chemical method and their characterization

V. Fruth ^{a,*}, E. Tenea ^a, M. Gartner ^a, M. Anastasescu ^a, D. Berger ^b, R. Ramer ^c, M. Zaharescu ^a

^a Institute of Physical Chemistry, Spl. Independentei 202, Bucharest 060021, Romania
^b "Politehnica" University, Polizu 1, Bucharest 011061, Romania
^c University of New South Wales, Sydney 2052, NSW, Australia

Available online 6 June 2006

Abstract

Multiferoic materials (having coupled electric, magnetic and structural order parameters that result in simultaneous ferroelectricity, ferromagnetism, and ferroelasticity) present opportunities for potential application in information storage, the emerging field of spinotronics and sensors. The perovskite BiFeO₃ is ferroelectric [Curie temperature (T_c) ~1103 K] and antiferromagnetic [Neél temperature (T_c) ~643 K], exhibiting weak magnetism at room temperature. Conditions for synthesizing single BiFeO₃ phase are critical since the temperature stability range of the phase is very narrow. Moreover, it is also difficult to control oxygen stoichiometry in the sample.

In this work the preparation of BiFeO₃ thin films by a specific wet chemical route is discussed. Respective influence of the precursors, thermal annealing condition, the substrate and, generally speaking, the preparation process of the films is presented.

Results obtained by X-ray diffraction and spectroscopic elipsometer (SE) was used to characterize the obtained films. © 2006 Elsevier Ltd. All rights reserved.

Keywords: Films; Spectroscopy; Optical properties; BiFeO₃

1. Introduction

Magnetoelectric (ME) effect, first presumed to exist by Curie, 1 also called multiferroic, exhibit both ferroelectric and magnetic ordering. Recent interest in these materials is driven by their potential application in memory devices and sensors. BiFeO₃ is one of the few magnetoelectric materials exhibiting ferroelectric properties in a wide range of temperature. Wang et al.^{2,3} reported multiferroic behavior, with ferromagnetic and ferroelectric polarizations that are both large at room temperature, in thin strained films of BiFeO₃ (BFO). Although at room temperature, bulk BFO is ferroelectric and antiferromagnetic, ^{4–8} Wang et al.² reported that a 70-nm film shows both an enhanced ferroelectric polarization (90 µC cm⁻²) and a substantial magnetization (1 μ_0 /Fe). This remains the only report of a robust room temperature multiferroic and suggests the potential for novel devices that exploit the anticipated strain-mediated magnetoelectric coupling between the two ordered ground states.

There results demonstrated a thickness dependence in these properties, and suggested that a likely explanation of these effects was that heteroepitaxial strain induced a monoclinic distortion, relaxing gradually with increasing thickness. Detailed X-ray studies have shown evidence for such a monoclinic structure, as well as no evidence for secondary phases. The out-ofplane lattice parameter for the BFO layer progressively increases as the thickness is decreased, consistent with the expected effect of epitaxial constraint. Another possibility, originally suggested by Teague et al., 9 is that high leakage in the bulk samples, somehow reduced in the films, could have prevented prior researchers (over the past four decades) from observing the large value of spontaneous polarization of BFO. In there comment, Eerenstein et al.¹⁰ argue that epitaxial strain does not enhance the magnetization and polarization in BiFeO₃. They conclude that an increased thickness dependent magnetization is not an intrinsic property of fully oxygenated and coherently strained epitaxial BFO films that exhibit a high electrical resistively. If it is only possible to achieve substantial magnetization values in deoxygenated BFO, then the applications potential is reduced, because an increased electrical conductivity will be detrimental to ferroelectric performance.

^{*} Corresponding author. Tel.: +40 21 3167912; fax: +40 21 3121147. *E-mail address*: vfruth@icf.ro (V. Fruth).

The above mentioned controversy underlines the importance of BFO films and their potential application. So, the obtaining of thin films of good qualities becomes an important task for studies and application. In this work we tried to control the thickness of the films using a wet chemical route. The obtained films were characterized by mean of spectroscopic elipsometry.

2. Experimental

Thin films were deposed onto a glass substrate following the sol–gel aqueous route. As precursors Bi(NO₃)₃ 5H₂O and Fe(NO₃) 9H₂O were used. The 0.1 M Bi(NO₃)₃ solution was prepared by dissolving 4.9 g Bi(NO₃)₃ 5H₂O into 100.0 ml (1:5 HNO₃:H₂O). Citric acid (label CB_n, *n* representing the number of layers) and polyvinyl alcohol (label PB_n) solutions were added as chelating agents. From these two solutions the films were deposited on silica-soda-lime glasses by dipping using a withdrawal rate of 5 cm/min. Solutions temperature, viscosity and pH were controlled. The films were thermally treated with a heating rate of 1 °C/min at 500 °C where a 1 h plateau was maintained.

The annealed films were characterized by X-ray diffraction (XRD). X-ray diffraction data were collected using a Shimadzu XRD 6000 diffractometer with Cu K α radiation at a step of 1.2° min⁻¹ in the range $2\theta = 10-70^{\circ}$. The structural and optical characterization of BiFeO₃ multilayer thin films was made by the spectroscopic ellipsometry (SE). The measurements were carried out in air, in the 400–700 nm wavelength range at an angle of incidence of 70° . The acquisition interval of the data was 10 nm and the reading accuracy of azimuths was 1 min. The SE spectra were fitted using the multilayer and multicomponent Bruggemann Effective Medium Approximation¹¹ (BEMA). The volume fractions of the components and the thickness of the layers were taken as fitting parameters.

3. Results and discussions

After each deposition followed by annealing treatments at $500\,^{\circ}\text{C}$ the samples were characterized by mean of X-ray diffraction and spectroscopic ellipsometry. The films had good adherence and uniformed spread on the glass support. The colour become light brown as the number of layers increased. In Fig. 1 are presented the XRD profile curves characteristic of 4 layers

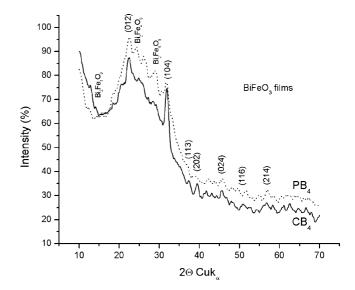


Fig. 1. XRD films patterns after 4 annealing treatment at $500\,^{\circ}$ C in air (CB₄, four layers with citric acid precursor solution and PB₄, four layers with polyvinyl alcohol precursor solution).

depositions of citric acid precursor solutions (CB) and polyvinyl alcohol (PB) precursor, respectively. One can notice some differences between the two samples; CB based solution present more crystallised peacks than PB based solution inferring that citric acid effect as chelate agent is more efficient. That may be explained by the presence of the active group –COO⁻. Characteristics peaks of Bi₂Fe₄O₉, as secondary phase, were observed for polyvinyl alcohol based precursor solution, suggesting that annealing treatment at higher temperature are necessary.

The structural and optical characterization of BiFeO₃ multilayer thin films was made by the Spectroscopic Ellipsometry. Owing to the fact that no n–k spectra were found in the literature as reference data, the BiFeO₃ samples were fitted assuming a physical homogeneous mixture of Bi₂O₃ and Fe₂O₃ oxides. It may be therefore expected equal volume fractions of Bi₂O₃ and Fe₂O₃ from the spectroellipsometric fitted data. It is noteworthy that a fit based on a Bi₃Fe₅O₁₂ reference was performed with no encouraging results.

The sample thickness and the volume fractions of the Bi_2O_3 and Fe_2O_3 mixture oxides are presented in Table 1 together with the fit error. The error reported in Table 1 was calculated

Table 1 Thickness of the samples (d) and the volume fraction of the components for C (citric acid precursor solution) and P (polyvinyl alcohol precursor solution) type samples

No. of layers	TT ^a	d (Å)		Bi ₂ O ₃ (%)		Fe ₂ O ₃ -W (%)		Air (%)		Error \times 10 ⁻⁷	
		C type	P type	C type	P type	C type	P type	C type	P type	C type	P type
Bi	_	1970	1950	19.52	21.49	20.72	23.20	59.76	55.31	2630	11073
B1	1	1930	1480	20.08	17.81	21.10	33.14	58.82	49.05	4739	94774
B2	2	4670	4230	18.73	24.87	25.81	27.03	55.47	48.10	13732	56477
В3	3	7430	5360	21.46	27.27	25.07	43.48	53.46	29.25	22923	220130
B4	4	9570	7540	24.95	38.75	26.15	35.18	48.90	26.06	21262	212448

^a TT, number of thermal treatments.

Download English Version:

https://daneshyari.com/en/article/1477898

Download Persian Version:

https://daneshyari.com/article/1477898

<u>Daneshyari.com</u>