Contents lists available at ScienceDirect







journal homepage: www.elsevier.com/locate/biotechadv

# Research review paper

# Dye removal by immobilised fungi

# Susana Rodríguez Couto \*,1

Department of Chemical Engineering, Rovira i Virgili University, Av. Països Catalans 26, 43007 Tarragona, Spain

#### ARTICLE INFO

Article history: Received 28 July 2008 Received in revised form 11 December 2008 Accepted 26 December 2008 Available online 13 January 2009

Keywords: Decolouration Immobilisation Synthetic dyes White-rot fungi

### ABSTRACT

Dyes are widely used within the food, pharmaceutical, cosmetic, printing, textile and leather industries. This has resulted in the discharge of highly coloured effluents that affect water transparency and gas solubility in water bodies. Furthermore, they pose a problem because of their carcinogenicity and toxicity. Therefore, removal of such dyes before discharging them into natural water streams is essential. For this, appropriate treatment technologies are required. The treatment of recalcitrant and toxic dyes with traditional technologies is not always effective or may not be environmentally friendly. This has impelled the search for alternative technologies such as biodegradation with fungi. In particular, ligninolytic fungi and their non-specific oxidative enzymes have been reported to be responsible for the decolouration of different synthetic dyes. Thus, the use of such fungi is becoming a promising alternative to replace or complement the current technologies for dye removal. Processes using immobilised growing cells seem to be more promising than those with free cells, since the immobilisation allows using the microbial cells repeatedly and continuously. This paper reviews the application of fungal immobilisation to dye removal.

© 2009 Elsevier Inc. All rights reserved.

#### Contents

| 1.  | Introduction                           |
|-----|----------------------------------------|
|     | Immobilisation of fungi                |
|     | 2.1. Entrapment                        |
|     | 2.2. Attachment                        |
| 3.  | Dye decolouration by immobilised fungi |
| 4.  | Conclusions and outlook                |
|     | cnowledgements                         |
| Ref | erences                                |

## 1. Introduction

Synthetic dyes have increasingly been used in the textile and dyeing industries because of their ease and cost-effectiveness in synthesis, firmness, high stability to light, temperature, detergent and microbial attack and variety in colour compared with natural dyes. This has resulted in the discharge of highly polluted effluents. Normally colour is noticeable at a dye concentration higher than 1 mg/L and an average concentration of 300 mg/L has been reported in effluents from textile-

manufacturing processes (Gonçalves et al., 2000; O'Neill et al., 1999). Over 7×10<sup>5</sup> ton and approximately 10,000 different dyes and pigments are produced annually world-wide, about 10% of which may be found in wastewater (Deveci et al., 2004). Colour interferes with penetration of sunlight into waters, retards photosynthesis, inhibits the growth of aquatic biota and interferes with gas solubility in water bodies (Banat et al., 1996). In addition, many dyes are believed to be toxic carcinogenic or to be prepared from known carcinogens such as benzidine or other aromatic compounds that might be formed as a result of microbial metabolism (Novotny et al., 2006; Kariminiaae-Hamedaani et al., 2007). Hence, removal of these dyes from the effluents is necessary. The structural diversity of dyes comes from the use of different chromophoric groups (e.g. azo, anthraquinone, triarylmethane and phthalocyanine groups) and different application technologies (e.g. reactive, direct, disperse and vat dyeing) (Heinfling et al., 1998). Common classes of dyes, based on the chromophore present, are shown in Table 1.

<sup>\*</sup> Current address: CEIT, Section of Environmental Engineering, Manuel de Lardizábal 15, 20018 San Sebastian, Spain. Tel.: +34 943212800x2239; fax: +34 943213076.

*E-mail address:* srodriguez@ceit.es.

<sup>&</sup>lt;sup>1</sup> Ikerbasque, Basque Foundation for Science, Alameda de Urquijo 36, 48011 Bilbao, Spain.

<sup>0734-9750/\$ –</sup> see front matter 0 2009 Elsevier Inc. All rights reserved. doi:10.1016/j.biotechadv.2008.12.001

### Table 1

Dye structures according to their chromophores (http://stainsfile.info/StainsFile/dyes/class/dyeclass.htm)

| Class          | General formula                           |
|----------------|-------------------------------------------|
| Acridine       |                                           |
| Anthraquinone  |                                           |
| Azo            |                                           |
| Diazonium      |                                           |
| Nitro          | NO <sub>2</sub>                           |
| Oxazin         | NH NH                                     |
| Phthalocyanine | X $N$ |
| Thiazin        |                                           |
| Triarylmethane |                                           |

The current existing techniques for the removal of dyes from dyecontaining wastewater have serious restrictions such as high cost, formation of hazardous by-products or intensive energy requirements (Stolz, 2001). Table 2 summarises the advantages and drawbacks of different non-biological processes applied to textile wastewater decolouration. The use of bacteria in the biological treatment of dye effluents may result in the generation of colourless dead-end aromatic amines, which are generally more toxic than the parent compounds (Kulla et al., 1983; Banat et al., 1996) and, therefore, may have poor adaptability and limited application to a wide range of dye wastewater (Kulla et al., 1983). Hence, the development of efficient and environmentally friendly

#### Table 2

Advantages and drawbacks of some non-biological decolouration processes applied to textile wastewater (after Robinson et al., 2001)

| Physical/                      | Method description                                                           | Advantages                                                       | Disadvantages                        |
|--------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------|
| chemical<br>methods            | -                                                                            | -                                                                | -                                    |
| Fenton reagents                | Oxidation reaction<br>using mainly H <sub>2</sub> O <sub>2</sub> –Fe<br>(II) | Effective decolouration of<br>both soluble and<br>insoluble dyes | Sludge<br>generation                 |
| Ozonation                      | Oxidation reaction using ozone gas                                           | Application in gaseous<br>state: no alteration of<br>volume      | Short half-life<br>(20 min)          |
| Photochemical<br>oxidation     | Reaction using mainly H <sub>2</sub> O <sub>2</sub> –UV                      | No sludge production                                             | Formation of by-products             |
| NaOCl<br>Oxidation             | Reaction using $\operatorname{Cl}^*$ to attack the amino group               | Initiation and<br>acceleration of azo-bond<br>cleavage           | Release of<br>aromatic<br>amines     |
| Electrochemical<br>destruction | Oxidation reaction<br>using electricity                                      | Breakdown compounds<br>are non-hazardous                         | High cost of electricity             |
| Activated<br>carbon            | Dye removal by adsorption                                                    | Good removal of a wide variety of dyes                           | Very expensive                       |
| Membrane<br>filtration         | Physical separation                                                          | Removal of all dye types                                         | Concentrated<br>sludge<br>production |
| Ion exchange                   | Ion exchange resin                                                           | Regeneration: no<br>adsorbent loss                               | Not effective<br>for all dyes        |
| Electrokinetic<br>coagulation  | Addition of ferrous<br>sulphate and ferric<br>chloride                       | Economically feasible                                            | High sludge<br>production            |

technologies to reduce dye content in wastewater to acceptable levels at affordable cost is of utmost importance.

By far the single class of micro-organisms most efficient in breaking down synthetic dyes is the white-rot fungi. These fungi constitute a diverse eco-physiological group comprising mostly basidiomycetous and to a lesser extent litter-decomposing fungi capable of extensive aerobic lignin depolymerisation and

#### Table 3

Ligninolytic enzymes and their main reactions (after Hatakka, 2001)

| 0 5 5                                                      |                               | ,                                                                        |                                                                                                                                                                           |
|------------------------------------------------------------|-------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Enzyme and<br>abbreviation                                 | Cofactor                      | Substrate, mediator                                                      | Reaction                                                                                                                                                                  |
| Lignin<br>peroxidase, LiP                                  | H <sub>2</sub> O <sub>2</sub> | Veratryl alcohol                                                         | Aromatic ring oxidised to cation radical                                                                                                                                  |
| Manganese<br>peroxidase, MnP                               | H <sub>2</sub> O <sub>2</sub> | Mn, organic acids as<br>chelators, thiols,<br>unsaturated fatty<br>acids | Mn(II) oxidised to Mn<br>(III); chelated Mn(III)<br>oxidises phenolic<br>compounds to phenoxyl<br>radicals; other reactions<br>in the presence of<br>additional compounds |
| Versatile<br>peroxidase, VP                                | H <sub>2</sub> O <sub>2</sub> | Mn, veratryl alcohol,<br>compounds similar to<br>LiP and MnP             | Mn(II) oxidised to Mn<br>(III), oxidation of<br>phenolic and non-<br>phenolic compounds,<br>and dyes                                                                      |
| Laccase                                                    | 02                            | Phenols, mediators,<br>e.g.,<br>hydroxybenzotriazole<br>or ABTS          | Phenols are oxidised to<br>phenoxyl radicals; other<br>reactions in the presence<br>of mediators                                                                          |
| Glyoxal<br>oxidase, GLOX                                   |                               | Glyoxal, methyl<br>glyoxal                                               | Glyoxal oxidised to<br>glyoxal acid; H <sub>2</sub> O <sub>2</sub><br>production                                                                                          |
| Aryl<br>alcohol oxidase, AAO                               |                               | Aromatic alcohols<br>(anisyl, veratryl<br>alcohol)                       | Aromatic alcohols<br>oxidised to aldehydes;<br>H <sub>2</sub> O <sub>2</sub> production                                                                                   |
| Other H <sub>2</sub> O <sub>2</sub> -<br>producing enzymes |                               | Many organic<br>compounds                                                | $O_2$ reduced to $H_2O_2$                                                                                                                                                 |

Download English Version:

# https://daneshyari.com/en/article/14783

Download Persian Version:

https://daneshyari.com/article/14783

Daneshyari.com