

Available online at www.sciencedirect.com

Journal of the European Ceramic Society 25 (2005) 2151-2154

www.elsevier.com/locate/jeurceramsoc

Preparation of potassium tantalate niobate thin films by chemical solution deposition and their characterization

J. Buršík^{a,*}, V. Železný^b, P. Vaněk^b

^a Institute of Inorganic Chemistry, Academy of Sciences of the Czech Republic, 25068 Řež, Czech Republic ^b Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 18221 Prague, Czech Republic

Available online 23 March 2005

Abstract

Potassium tantalate niobate ($KTa_xNb_{1-x}O_3$, (KTN), where x=0, 0.21, 0.36, 0.53, 0.74, 0.82, 0.86, and 1) thin films of perovskite structure were prepared by chemical solution deposition (CSD) on Si and SiO₂ glass substrates. A homogeneous and stable precursor solution was obtained by dissolving potassium, niobium and tantalum isobutoxides in absolute isobutanol and an addition of diethanolamine as a modifier. The film quality was determined by annealing temperature and heating regime, Al_2O_3 "chemical" buffer layer and $KNbO_3$ seeding layer. Optimum conditions for film preparation were found. It was approved by X-ray diffraction (XRD) that the films have the wanted pseudocubic perovskite structure. Infrared transmittance was measured for broad range of Ta/Nb ratios. The spectra show continuous transformation from $KTaO_3$ to $KNbO_3$ and indicate that the optical axis lies in the plane of the film.

Keywords: Films; Tantalates; Chemical solution deposition; Spectroscopy

1. Introduction

Potassium tantalate niobate, KTa_{1-x}Nb_xO₃ (KTN), thin films have received a great deal of attention owing to their piezoelectric, pyroelectric, and electrooptic properties. As only KTN films with perovskite structure have these desirable properties, the formation of pyrochlore phase should be avoided at their preparation. The paraelectric cubic perovskite phase of KTN (Ta/Nb = 65/35) is the most frequently studied because it is a promising candidate material for IR detectors and electro-optic devices owing to its very large quadratic electrooptic coefficient and photorefractive effect. 1 Using different procedures including chemical solution deposition (CSD) method, KTN perovskite thin films have been successfully prepared. Highly $(1\,0\,0)\langle u\,v\,w\rangle$ oriented KTN(65/35) perovskite films¹ were prepared from alkoxide precursors deposited on (100)SrTiO₃, and (100)MgO and annealed at 700 and 750 °C, respectively. Quite similar films² were also prepared from hydrolysed alkoxide sols deposited on (100)MgO and annealed at 700 °C, unfortunately, only pyrochlore phase was detected in KTN(65/35) films² deposited on (100)Si, (1-102)Al₂O₃ and (01-10)SiO₂. Besides, various substrate types³ were tested for KTN(65/35) film preparation. In addition to the substrates mentioned above, also Pt-coated (111)Si, (100)YSZ, (110)SrTiO₃, and (012)LaAlO₃ were used. It was concluded³ that the phase composition of the KTN thin films had a strong dependence on the crystal structure of the substrates, while other processing parameters (chemical additives to sol, annealing regimes) played less important roles. Using substrates (100) and (110)SrTiO₃, and (100)MgO with lattice parameters and crystal symmetry close to KTN, the pure perovskite phase was obtained. The KTN films contained a varying portion of pyrochlore phase on the substrates which exhibited lower degree of crystallographic matching $((100)YSZ, (1-102)Al_2O_3, (012)LaAlO_3)$. Only the pyrochlore phase was observed on the substrates having no structural similarity with the film (amorphous SiO₂ and Ptcoated (111)Si). The structural, dielectric, and ferroelectric properties of a series of KTN thin films of compositions (65/35, 50/50, and 35/65), and deposited on bare and

^{*} Corresponding author. Tel.: +420 2 6617 2195; fax: +420 2 2094 1502. *E-mail address*: bursik@iic.cas.cz (J. Buršík).

Pt-coated (100)MgO were studied.⁴ Pure perovskite phase was grown on both types of substrates at 700°C with a high degree of preferred (100) orientation. In summary, in all above mentioned papers the maximum content of Ta in KTN films reached 65%, and preparation of pure perovskite phase was successful only when a crystallographically similar single crystal substrate (i.e., SrTiO₃ or MgO) was used.

This paper describes the preparation of a series of KTN perovskite thin films, covering the entire interval of Ta:Nb ratios, deposited on (100)Si, and SiO₂ glass substrates, and their characterization by X-ray diffraction (XRD) and infrared spectroscopy.

2. Experimental

 $Ta(OCH_2CH(CH_3)_2)_5$, $Nb(OCH_2CH(CH_3)_2)_5$, K(OCH₂CH(CH₃)₂) were chosen as starting compounds for the synthesis of KTaO₃ (KT) and KNbO₃ (KN) sols, together with absolute HOCH₂CH(CH₃)₂ as a solvent, and 2,2-diethanolamine as a modifier. Detailed procedures for syntheses and handling of precursors and cleaning of the substrates are given elsewhere.⁵ In order to minimize the loss of potassium due to the evaporation and reaction with the underlying layers, 5-7% excess of potassium in KTN sols with respect to stoichiometric concentration was used. Al(OCH₂CH(CH₃)₂)₃, absolute (CH₃)₂CHCH₂OH as the solvent, and 2,2-diethanolamine as a modifier were used for the preparation of the sol for Al₂O₃ buffer layer deposition (see our previous paper⁵). Unhydrolysed solutions were deposited by spin-coating (Karl Suss Gyrset coater) at 2000 rpm, the samples were then dried (at 110 °C for 5 min) in a drying chamber, and pyrolysed in a preheated furnace. If necessary, the deposition-drying-pyrolysis cycle was repeated until the desired thickness was reached. Finally, the samples were crystallized by annealing. The conditions for the pyrolysis and annealing steps differed according to the deposited layer: the Al₂O₃ buffer layer was pyrolysed at 450 °C for 5 min, and annealed at 800 °C for 60 min; the KTN layers were pyrolysed at 550 °C for 5-10 min. The annealing was carried out under the conditions simulating the rapid thermal annealing technique: the annealed sample was immersed quickly into the muffle furnace preheated at 750 °C and annealed for 5 min (Fig. 1). The composition of KTN sols and films was determined by means of the volumetric titration and electron microprobe analysis, respectively. The thickness of films was measured by a stylus profilometer, the crystallization behavior was determined mainly by powder X-ray diffraction and atomic force microscopy (AFM). Further characterization of the perovskite films was done using far infrared spectra. The infrared transmittance on KTN thin films was measured in the spectral range from 30 to 700 cm⁻¹ at room temperature using a Bruker IFS 113v Fourier transform spectrometer. The raw experimental

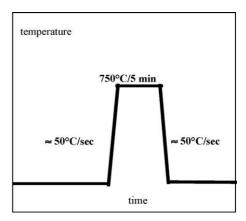


Fig. 1. Scheme of annealing procedure simulating rapid thermal annealing technique.

spectra show interference fringes originating in multiple passage of infrared radiation in the Si substrate. The fringes were eliminated by a Fourier-transform filtering of the transmittance.

3. Results and discussion

3.1. Film preparation

This work is a continuation of our previous study⁵ dealing with the preparation of KTaO₃ (KT) perovskite thin films. It was confirmed that the parameters optimal for the preparation of pure KT layers⁵ were suitable also for the preparation of KTN layers with various Ta/Nb ratio.

Concerning the formation of perovskite phase in thin films, two main issues seem to be decisive. The first one is the stability of perovskite phase at higher temperatures and that of pyrochlore phase at lower temperatures. The second one is the high volatility and reactivity of basic potassium towards the acid substrates. In the temperature range from 750 to 850 °C, in a few (2–12) minutes, the perovskite phase is formed in KTN films preferentially, as it can be seen from X-ray patterns of KTN films annealed at various temperatures presented in Fig. 2. Below the lower temperature limit, a pyrochlore phase crystallizes preferentially; above the upper limit the formation of potassium deficit phases as $K_6 Ta_{10.9} O_{30}$ is inevitable.

The Al₂O₃ film of thickness above 200 nm is used for chemical separation of the substrate from the deposited film ("chemical" buffer layer). This substantially reduces the loss of potassium due to its reaction with acid substrates such as Si and SiO₂ glass. The influence of the Al₂O₃ film thickness on the preferential crystallization of the KTN perovskite phase is shown in Fig. 3. A pseudocubic KN layer (thickness 60 nm, lattice misfit <2% in comparison with pure KT) was used as a seeding layer promoting the growth of perovskite KTN films via the grain growth from seed islands.

Download English Version:

https://daneshyari.com/en/article/1478976

Download Persian Version:

https://daneshyari.com/article/1478976

<u>Daneshyari.com</u>