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The creep behavior of crystalline materials at low temperatures (T < 0.3Tm) is discussed. In

particular,  the phenomenological relationships that describe primary creep are reviewed

and  analyzed. A discussion of the activation energy for creep at T < 0.3Tm is discussed in

terms  of the context of higher temperature activation energy. The basic mechanism(s) of

low temperature creep plasticity are discussed, as well.
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1.  Introduction

Temperature ranges for creep can be subdivided into three cat-
egories: (1) high temperature creep (T > 0.6Tm), (2) intermediate
temperature creep (0.3Tm < T < 0.6Tm), and (3) low tempera-
ture  creep (T < 0.3Tm). Generally, creep studies investigate high
temperature  deformation; however, this paper reviews on the
latter  category. Less attention has been paid to low temper-
ature  creep due to the fact that materials generally neither
fail  nor experience significant plasticity at lower (especially
ambient and cryogenic) temperatures.

Creep at low temperature can be understood as time-
dependent plasticity that occurs at T < 0.3Tm and at stresses
often  below the macroscopic yield stress (�y

0.002). This is where
creep  is often not expected. Still, even with the low attention
paid  to this area of creep, many  materials do experience very
noticeable  plasticity at lower temperatures. This has some
commercial importance. These materials include Ti alloys and
steels  [1–10], Al–Mg [11], �-Brass [12], ionic solids [13], pure Au,
Cd,  Cu, Al, Ti, Hg, Ta, Pb, Zn [14–28] and precipitation hardened
alloys  [29], and glass and rubber [28].

Low-temperature creep has generally been investigated
because of two reasons: (1) Materials may  undergo plas-
ticity  that affects its intended performance. This category
includes structural alloys, and creep of Cu at cryogenic tem-
peratures;  (2) There has been theoretical curiosity regarding
low  temperature deformation and the mechanism of plastic-
ity,  particularly at cryogenic temperatures. This includes the
validity  of the dislocation intersection mechanism proposed
by  Seeger et al. [30,31] as investigated by others [19]. Also
there  have been investigations of the proposition of quantum
mechanical tunneling of dislocations at very low temperature
[13,20,22,24,26,27].

1.1.  Phenomenology

Generally, but not always, low temperature creep is a discus-
sion  of primary creep without the observation of a genuine
mechanical steady state. One study has suggested steady state
at 4.2 K, but there were  problems with the data analysis [32].

At  high temperatures, primary creep is described by the equa-
tions:

ε = ˇt1/3 + c1 (1)

as suggested long ago by Andrade [33] and Orowan [34]. Evans
and  Wilshire [35] reviewed the high-temperature primary
creep  equations and suggested a refinement. This refinement
led  to an equation of the form:

ε = at1/3 + ct + dt4/3 (2)

This is now the common phenomenological equation used
to  describe primary creep. Variations to this equation include
[36]:

ε = at1/3 + ct (3)

and [37],

ε = at1/3bt2/3 + ct (4)

or,

ε = atb + ct (5)

where [38],

0 < b < 1

or [1],

ε = atb (6)

where,

0 < b < 1

It is suggested that Eqs. (1)–(6) are all of a similar (power law)
form.  Another form of equations was  suggested by Phillips
[28],  Laurent and Eudier [39] and Chévenard [40],

εp =  ̨ ln t + c2 (7)

Wyatt [18], long ago, suggested for pure metals, such as Al,
Cd  and Cu, that at higher temperatures, Eq. (1) was  the proper
descriptive equation, but at lower temperatures, he then sug-
gested  Eq. (7) was  the proper form.

1.2.  Objectives

The following discussion will describe the phenomenological
trends in greater detail. The data appears to best be pre-
sented/described by material category (e.g. alloy, metal or
ceramic).  In particular, the low-temperature creep behavior
of  both alloys and pure metals will be described in sepa-
rate  sections. It will be shown that, generally, the descriptive
equations generally fall within the forms of Eq. (1) or Eq. (2).
Distinctions will be made for cases where the applied stress is
above and below the conventional yield stress (at an ordinary
strain-rate; e.g. 10−4 s−1), as well as at shorter times than a few
hours  and much  longer times.
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