

Contents lists available at ScienceDirect

Journal of Non-Crystalline Solids

journal homepage: www.elsevier.com/locate/jnoncrysol

Glass-forming region and physical properties of the glasses in the $TeO_2 - MoO_3 - Bi_2O_3$ system

O.A. Zamyatin ^{a,b,*}, A.D. Plekhovich ^b, E.V. Zamyatina ^a, A.A. Sibirkin ^{a,b}

^a Lobachevsky State University of Nizhny Novgorod, 23 Prospekt Gagarina, (Gagarin Avenue), Nizhny Novgorod 603950, Russia
 ^b G.G. Devyatykh Institute of Chemistry of High Purity Substances RAS, 49 Tropinin Str., Nizhny Novgorod 603950, Russia

ARTICLE INFO

ABSTRACT

Article history: Received 13 June 2016 Received in revised form 27 July 2016 Accepted 21 August 2016 Available online xxxx

Keywords: Tellurite glasses Glass formation region Thermal properties Phase equilibrium The glass-forming region of the TeO₂ – MoO₃ – Bi₂O₃ system was determined by melt quenching method at 850 °C. The nature of crystalline phases formed by heating a mixture of initial oxides up to the predetermined temperature was investigated by X-ray diffraction analysis. The physical properties of glasses were defined and the value of molar volume (V_m), oxygen molar volume (V_o), oxygen packing density (ODP), packing density (V_t) and Poisson's ratio were calculated at an equivalent substitution of TeO₂ + MoO₃ by Bi₂O₃. DSC curves for series of ternary glasses with different contents of bismuth trioxide were registered and glass transition temperature (T_g), crystallization temperature (T_x) and melting temperature (T_m) were found and the thermal stability range of glasses (ΔT) was calculated. The glass compositions stable to crystallization and suitable for fiber drawing were found.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Tellurite glasses have unique physical and chemical properties, in particular, a low energy of phonons, high values of refractive indices, high dielectric constant, broad transparency window, relatively low temperatures of vitrification and melting, high thermal and chemical stability [1–9]. Therefore they are promising materials in photonics and optoelectronics for fabrication of solid-state lasers, optical fibers, optical fiber amplifiers, optical displays, various sensors, data storage devices and various optoelectronic converters [10–13]. The introduction of the oxides of heavy elements (PbO, Bi₂O₃, MoO₃, WO₃, Nb₂O₅ and others) into tellurite glass increases glass-forming ability and improves thermal, mechanical and optical characteristics [14–16].

The binary tellurite-molybdate system is one of the attractive systems with wide glass-forming range and high solubility of some heavy metal oxides in it. The study of its properties initiated in [17], the phase diagram description by [18], the region of vitrification was established in [19,20] and glass structural, optical and electrical properties were reported in [21–25]. Investigation of optical and electric properties at addition of elements oxides into $TeO_2 - MoO_3$ system was conducted in [23,26–30]. However, complete information about the effect of bismuth trioxide on the fundamental properties of $TeO_2 - MoO_3$ glasses has not published yet. There are only limited publications [31]

E-mail address: xef7@mail.ru (O.A. Zamyatin).

devoted to investigation of Er^{+3} luminescence in the glasses of $TeO_2 - MO_3 - Bi_2O_3$ system. The similar $TeO_2 - WO_3 - Bi_2O_3$ system has been investigated and glass forming range and crystalline phases formed during the crystallization of glasses were established [32,33]. Foregoing facts indicate that knowledge of ternary tellurite-molybdate system containing bismuth oxide is limited and they may be demanded in optical technology.

Therefore, the purpose of the work was to determine the glassforming area in the $TeO_2 - MoO_3 - Bi_2O_3$ system and to study the important thermal and physical parameters of the prepared glasses as well as to investigate the phase formation processes during synthesis.

2. Experimental

2.1. Glass preparation

The glasses of system $TeO_2 - MoO_3 - Bi_2O_3$ were prepared from high-purity TeO_2 , MoO_3 and Bi_2O_3 , obtained by thermal decomposition of bismuth nitrate pentahydrate at 800 °C.

The oxides were weighed using the analytical balance Shimadzu AU-120 (with an accuracy of \pm 0.1 mg) and then thoroughly mixed in a porcelain mortar. The mixture with a mass of 5 g was placed in a porcelain crucible and melted in a furnace at 850 °C for 15 min in the air. The produced melt was poured into a polished steel mould and the formed glass was annealed in air at 310 °C during 1 h and then was cooled down to room temperature. The selected compositions of glass samples are given in Table 1.

^{*} Corresponding author: Lobachevsky State University of Nizhny Novgorod, 23, Gagarin av., Nizhny Novgorod 603950, Russia.

Table 1

Main parameters of the glasses in the TeO₂-MoO₃-Bi₂O₃ system.

Sample ID	Glass compositions (mol. %)			T_g (°C)	T_c/T_m , (°C)	ΔT	ρ, 25 °C (g cm ⁻³)	$ ho_{cal}$ (g cm ⁻³)	V_M (cm ³ ·mol ⁻¹)	V_0 (cm ³ ·mol ⁻¹)	OPD (mol L ⁻¹)	μ_{cal}	$\mu_{cal}{}'$	\overline{n}_{c}	n_b (×10 ²¹ cm ⁻³)
	TeO ₂	MoO_3	BiO _{1.5}												
Te:Mo = 2:	1														
TMB1	63.3	31.7	5.00	318	-	-	5.29	5.52	29.93	13.06	76.59	0.252	0.218	2.73	95.26
TMB2	56.7	28.3	15.0	326	-	-	5.69	5.88	29.20	13.23	75.60	0.252	0.215	2.87	100.34
TMB3	50.0	25.0	25.0	333	390	57	6.07	6.23	28.67	13.49	74.12	0.251	0.213	3.00	105.02
Te:Mo = 1:1															
TMB4	47.5	47.5	5.00	313	-	-	5.05	5.37	30.86	12.59	79.40	0.259	0.212	3.05	98.55
TMB5	42.5	42.5	15.0	317	-	-	5.49	5.74	29.86	12.71	78.69	0.260	0.210	3.15	103.85
TMB6	32.5	32.5	35.0	337	378	41	6.27	6.48	28.74	13.37	74.81	0.255	0.207	3.35	112.10
Te:Mo = 1:2															
TMB7	28.3	56.7	15.0	311	364/418	53	5.22	5.60	30.98	12.43	80.43	0.263	0.206	3.43	105.62
TMB8	25.0	50.0	25.0	324			5.65	6.00	30.11	12.68	78.88	0.264	0.205	3.50	110.00
<i>Te:Mo</i> = 4:1															
TMB9	76.0	19.0	5.00	327	442	115	5.49	5.65	29.20	13.49	74.15	0.245	0.223	2.48	92.40
TMB10	68.0	17.0	15.00	331	392	59	5.86	6.00	28.66	13.68	73.10	0.245	0.220	2.64	97.50

2.2. Thermal analysis

Thermal properties of the glasses were investigated by differential scanning calorimetry analysis (DSC) in simultaneous system Netzsch STA 409 PC Luxx under flowing argon gas with a heating rate of 10 °C/min. Glass transition temperature (T_g) and crystallization temperature (T_c) are defined as the onset of DSC curves. The glass stability (ΔT) against crystallization is calculated as the difference between the temperatures of crystallization and glass transition $\Delta T = T_c - T_g$.

2.3. X-ray phase analysis

The nature of the amorphous and crystalline samples was checked by X-ray phase analysis (XRD) on Shimadzu XRD-6000 using the radiation of Cu K_{α} in the range of 2 θ from 10 to 60° with voltage on the tube of 40 kV and current of 30 mA.

2.4. Physical properties of glasses

The density of glasses (ρ) was determined at room temperature by Archimedes principle using distilled water as immersion liquid (error for the determined was 0.02 g/cm³) and a digital balance of sensitivity 10^{-4} g. The density was obtained from the relation

$$\rho = \rho_b \frac{W_{air}}{W_{air} - W_{water}}$$

where ρ_b is the density of distilled water, $W_{air \ \text{H}} W_{water}$ – weight of the glass sample in air and in distilled water, respectively.

Theoretical density (ρ_{cal}) was calculated as the additive contribution of each oxide to glass by formula [34]

$$\rho_{cal} = \sum \rho_i x_i$$

where ρ_i – density of each component *i*, x_i – the molar fraction of each component *i*.

The molar volume of glasses (V_m) was calculated as a function of the mole fraction of each component using the relation

$$V_m = \sum \frac{x_i M_i}{\rho}$$

where x_i and M_i – the molar fraction and molecular weight of *i*-th component, ρ is the density of glass.

Oxygen molar volume (V_0) was calculated by the following formula:

$$V_0 = V_m \left(\frac{1}{\sum x_i n_i} \right)$$

where n_i is the number of oxygen atoms in each constituent oxide. Oxygen packing density (OPD) was calculated by formula

 $OPD = 1000C(\rho/M)$

where *C* is the number of oxygen atoms per each composition, ρ is the density and *M* is the molecular weight of the glass sample.

2.5. Structural investigations

Average cross-link density (\overline{n}_c) of the glasses was calculated using the relation [34]:

$$\overline{n}_c = \frac{\sum x_i (n_c)_i (N_c)_i}{\sum x_i (N_c)_i}$$

where x_i is the molar fraction of each component *i*; N_c is the number of cations per glass formula unit, $n_c = n_f - 2$, n_f is coordination number of the cations (4 for TeO₂ and 6 for MoO₃ and Bi₂O₃).

Number of bonds per unit volume of the glasses (n_b) , was calculated by the following formula

$$n_b = \frac{N_A}{V_m} \sum \left(n_f x \right)_i$$

where N_A is the Avogadro's number, V_M molar volume of the glass.

Poisson's ratio of the glasses by Makishima and Mackenzie theory (μ_{cal}) was calculated theoretically according to the following expressions [35]

$$\mu_{cal}=0.5-\frac{1}{V_t}$$

and by the theory of Bridge (μ'_{cal}) according to the equation [36]

$$\mu'_{cal} = 0.28 \ (\overline{n}_c)^{-1/4}$$

The packing density (V_t) was calculated by formula

$$V_t = (1/V_m) \sum V_i x_i$$

Download English Version:

https://daneshyari.com/en/article/1480099

Download Persian Version:

https://daneshyari.com/article/1480099

Daneshyari.com