ELSEVIED

Contents lists available at ScienceDirect

Journal of Non-Crystalline Solids

journal homepage: www.elsevier.com/locate/jnoncrysol

Molecular dynamics simulations of pressure-induced structural and mechanical property changes in amorphous Al₂O₃

Giang T. Nguyen a, Thao T. Nguyen a, Trang T. Nguyen a, Vinh V. Le a,*

- ^a Department of Computational Physics, Hanoi University of Science and Technology, Hanoi, Vietnam
- ^b Faculty of Physics, Hanoi National University of Education, Hanoi, Vietnam

ARTICLE INFO

Article history: Received 25 May 2016 Received in revised form 5 July 2016 Accepted 14 July 2016 Available online 22 July 2016

Keywords:
Molecular dynamics
Amorphous alumina
Units AlO_x
Crystalline
Mechanical properties

ABSTRACT

Molecular dynamics (MD) simulations of amorphous alumina have been carried out to investigate the pressure-induced structural transformation and mechanical properties. We found that not only the fraction of units AlO_x (x=4,5,6) but also the density of each AlO_x type change upon compression. The density of sample can be expressed through the fraction and partial density of units AlO_x . With increasing pressure, O atoms are more ordered than Al atoms and form fcc and hcp clusters. The same units AlO_x link together to form atomic clusters (AC) of type AC_4 , AC_5 and AC_6 (AC_4 , AC_5 and AC_6 consist of units AlO_4 , AlO_5 and AlO_6 , respectively). The Young's modulus can also be expressed through the fraction and partial Young's modulus of units AlO_x .

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Amorphous alumina (a-Al₂O₃) has been being materials of great technological applications such as a high-k dielectric [1], in optical devices [2], luminescence [3], catalysis [4], corrosion and wear-resistant [5]. Although prototypical Al₂O₃ alone cannot be obtained as a bulk glass [6], however, a-Al₂O₃ can be produced as thin film through anodic process [7-10] or vapor deposition [11-18]. Nanoparticles of a-Al₂O₃ have also synthesized by the laser evaporation process [19]. The structure of a-Al₂O₃ contains basic units AlO_x (x = 4, 5 and 6) network. The network topology of a-Al₂O₃ have been analyzed experimentally using extended X-ray absorption fine structures (EXAFS) [7], electron extended energy loss fine structure (EXELFS) [8]. X-ray and neutron diffraction [9,10], and solid-state NMR experiments [14-16,19]. In these studies, only the first two diffraction peaks of the crystalline solid remain with the Al—O bond length varied from 1.8 Å to 1.9 Å and different ratios of AlO_x units. Furthermore, these experiments have confirmed that the density of a-Al₂O₃ varies over a large range, between 2.1 and 3.8 g·cm $^{-3}$ [6–8], which implies the existence of many metastable states. However, in our best knowledge, no experimental evidence of the polyamorphism [20] in pure a-Al₂O₃ has been presented yet, such as Ge_2O [21], SiO_2 [22] and Y_2O_3 -Al₂O₃ [23] glasses which have two distinct amorphous states, denoted high-density amorphous (HDA) and low-density amorphous (LDA). Although molecular dynamics (MD) simulations [24-29] have showed that the existence of structural transformation from a tetrahedral to an octahedral network structure upon

compression, no evidence of a first - order phase transition has observed in a-Al₂O₃. These simulations imply that the LDA phase contains units AlO₄ and the HDA phase may contain units AlO₅ and AlO₆, but the density of each separate kind of units AlO_x has not been presented. The same units AlO_x (x = 4 or 5 or 6) may be located nearby via common oxygen and create atomic clusters (AC). Consequently, there are three types of ACs in the network structure: AC₄, AC₅ and AC₆ which consist of AlO₄, AlO₅ and AlO₆ units, respectively. Not only there is no report on the distribution of the ACs but also the mechanical behavior of the each AC_x (x = 4 or 5 or 6) upon compression have not been investigated yet. Furthermore, upon compression, the pair radial distribution function (RDF) $g_{O-O}(r)$ has showed more structural peaks [25,26] which imply the significant change of the intermediate range order in a-Al₂O₃ samples. Therefore, in this work, we report on the results of density and the structural evolution of a-Al₂O₃ under compression, and discuss the AC_x and mechanical behavior of these systems.

2. Computational procedures

The MD simulation has been performed using a configuration containing 5000 atoms (2000 Al and 3000 O) in a cube under periodic boundary conditions. We apply the Coulomb-Buckingham potential which correctly produces the liquid and amorphous structures [23,30]. The long-range Coulomb interactions were calculated with the Ewald summation technique, which is applied to three-dimensional periodic boundary conditions. The Verlet algorithm with a time step of 1 fs is adopted and the simulation was executed at a constant pressure (the ensemble NPT). The initial configuration was randomly generated all atoms in the simulation box corresponding to the density of

^{*} Corresponding author. E-mail address: vinh.levan@hust.edu.vn (V.V. Le).

2.8 g.cm $^{-3}$ with condition that no two atoms be closer than 1.0 Å. This sample was heated at the temperature of 5000 K and the pressure of 0 GPa for over 5×10^5 time steps and subsequently cooled down to 300 K at 1 K/ps. At 300 K, relaxation was performed over 10^5 time steps without any disturbance. Other samples were obtained by the compression procedure with different pressure. The simulation was performed as follows: the sample at the pressure of 0 GPa is compressed to pressure P for 10^6 time steps and then relaxed for over 10^5 time steps. The obtained sample is in the completed equilibrium.

In order to determine the structural unit AlO_x we used the cut-off distances, usually chosen as the position of the minimum after the first peak of the pair RDFs $g_{Al-O}(r)$. To calculate the void, the radius of Al and O atoms is 1.23 and 0.73 Å, respectively. The void is defined as a sphere that can be inserted in contact with four atoms and do not intersect with any atom. Strain-stress simulations with a strain rate of $2 \times 10^{11} \ s^{-1}$ were calculated following the computational procedures which were described in detail elsewhere [29].

3. Results and discussion

We obtain the Al_2O_3 samples with the volume and density dependence of the pressure as displayed in Fig. 1. We can see that the volume decreases drastically with increasing pressure from 0 to 25 GPa and then gradually with a further increase of pressure. This P-V isotherm shows that no discontinuous changes like the first-order transition in H_2O [31] or SiO_2 [32] glasses, and this result is good agreement with one in Ref. [26]. At the pressure of 0 GPa, the density is 2.93 g·cm⁻³, and this value is little higher than that in the work [26,28] but little lower than that in Ref. [25]. Possibly, it is related to different potentials used here and in Refs. [25,26,28]. However, Skinner et al. [33] reported that the model of Al_2O_3 used the partial charges potential [30] gives not only consistent density with the most recent density measurements, but also the best overall agreement with the diffraction data. This is a reason why, therefore, the partial charges potential [30] was used in

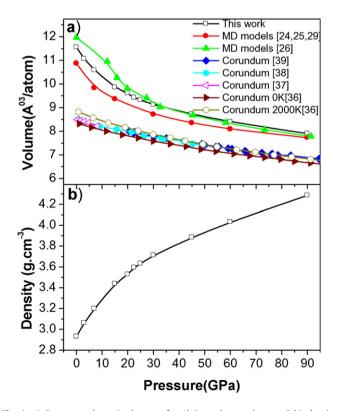


Fig. 1. a) Pressure-volume isotherms of a-Al $_2$ O $_3$ and corundum, and b) density dependence of the pressure of a-Al $_2$ O $_3$ systems at the temperature of 300 K.

this work. With increasing pressure from 0 to 25 GPa, the density increases greatly and then almost linearly gradually with a further increase of pressure. Here we found that density increases ~20% at P=20 GPa while it increases ~22% at P=20 GPa [26] and ~14% at P=25 GPa [28]. Although there is no experiment of the pressure-induced structural transformation in a-Al₂O₃, however, both experiment [34] and first-principles computations [35] show that the transformation from corundum to Rh2O3(II)-type alumina at 87–113 GPa occurs with the increase of density ~34%. More theoretical [36] and experimental [37–39] pressure-volume isotherms of corundum have been performed. With increasing pressure from 0 to 10 GPa, the volume of a-Al₂O₃ varies faster than that of corundum, but the varied volume in both of a-Al₂O₃ and corundum is almost similarly with further increase of the pressure.

Fig. 2 displays the total RDFs for neutron scattering $G_N(r)$ and pair RDFs of Al_2O_3 samples. For the total RDFs $G_N(r)$ exhibiting the shortorder structure of amorphous phase (see Fig. 2a), the first peak shifts to the right from 1.80 to 1.82 Å, while the second peak shifts to the left from 2.86 Å to 2.54 Å with increasing pressure. At the density of 3.20 g·cm⁻³ (P = 7GPa), the $G_N(r)$ of the model is good agreement with the experimental data [10,40]. The first peak of the $G_N(r)$ is contributed from the pair RDF $G_{Al-O}(r)$ and the second peak is contributed from the pair RDFs $G_{Al-Al}(r)$ and $G_{O-O}(r)$. For the $G_{Al-O}(r)$ exhibiting the Al—O bond distance (see Fig. 2b), the shape is almost unchanged except the height and position of the first peak with increasing pressure. Fig. 2c shows the $G_{Al-Al}(r)$ in that the first peak is broadening and shifts to the left from 3.20 Å to 2.80 Å upon compression. The first peak of the $G_{O-O}(r)$ (see Fig. 2d) also shifts to the left from 2.82 to 2.54 Å, but a new peak appears at the position of 3.68 \pm 0.06 Å with increasing pressure above 15 GPa. These new peaks were also observed in other simulations upon compression of a-Al₂O₃ [25,26] but no clear explain has been provided yet. They like the second peak of crystalline structure (faced centered cubic - fcc or hexagonal closed packed - hcp). There is experimental evidence indicating that the structural ordering of the distorted oxygen (O) sublattice is associated with a densification of the Al₂O₃ film due to the reduction of free volume [41]. This experiment also confirms that, during the amorphous to crystalline transition, no considerable short-range ordering or redistribution of Al cations over AlO₄ or AlO₆ interstices of the distorted, densely packed O sublattice, occurs. Recently, C. Kong et al. used classical MD simulations [42] presented that the crystallization of vitreous Al₂O₃ includes the O atoms packed in fcc structure and the Al atoms randomly located in space. Here we used the common neighbor analysis (CNA) [43] to examine the structure of a-Al₂O₃ samples. We found that only the O atoms arrange in both fcc and hcp lattices and do not possess icosahedral order with increasing pressure above 7 GPa. Under compression, these O atoms grow in the form of fcc and hcp clusters, in that they contain a few ten atoms as presented in Fig. 3. Our results also indicate that hcp order is more little favorable than fcc, because the former allows more fluctuations in the structure [44]. Furthermore, this may be related to the softer nature of hcp than for fcc against some deformation modes [45]. Let N_{Crvs} be the number of fcc and hcp atoms, and N_O be the number of O atoms in the sample. At the pressure of 7 GPa, the ratio N_{Crvs}/N_O is 0.02 in the sample. This ratio increases with increasing pressure and reaches 0.195 at the pressure of 90 GPa. The O atoms of crystalline clusters distributed over units AlO_x (x = 4, 5 and 6) are presented in Table 1. We realize that the distribution of these O atoms over units AlO_x strongly depends on the compression, due to the fraction of units \mbox{AlO}_{x} changed with increasing pressure (see Fig. 4a). The Al atoms, the nearest-neighbor crystalline O atoms, randomly distribute over units AlO_x not only in fcc O clusters but also in hcp O clusters. Therefore, the here observed fcc O clusters is further denoted as the nucleation sites of γ'' -Al₂O₃ in the literature [46] and observed hcp O clusters denoted as the nucleation sites of k'-Al₂O₃ in the literature [47]. We also calculated the contribution to the new peak of the $G_{O-O}(r)$ (at the position of 3.68 ± 0.06 Å) from the fcc and hcp O clusters, in that they contribute ~8% at the pressure of 30 GPa and ~30% at the pressure of 90 GPa.

Download English Version:

https://daneshyari.com/en/article/1480197

Download Persian Version:

https://daneshyari.com/article/1480197

Daneshyari.com