ELSEVIER

Contents lists available at ScienceDirect

## Journal of Non-Crystalline Solids



CrossMark

journal homepage: www.elsevier.com/locate/jnoncrysol

# Effects of Ce<sup>3+</sup> sensitizer on the luminescent properties of Tb<sup>3+</sup>-activated silicate oxyfluoride scintillating glass under UV and X-ray excitation

Yong Zhang <sup>a,b</sup>, Ning Ding <sup>a</sup>, Tao Zheng <sup>a</sup>, Shan Jiang <sup>a</sup>, Bing Han <sup>a</sup>, Jingwen Lv <sup>a,\*</sup>

<sup>a</sup> School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China
<sup>b</sup> School of Physics, Iilin Normal University, Siping 136000, China

#### ARTICLE INFO

Article history: Received 19 January 2016 Received in revised form 23 March 2016 Accepted 24 March 2016 Available online 1 April 2016

Keywords: Scintillating glass Tb<sup>3+</sup>/Ce<sup>3+</sup>-codoped Energy transfer X-ray excited luminescence

#### ABSTRACT

Novel  $Tb^{3+}$  or  $Ce^{3+}$  doped and  $Tb^{3+}/Ce^{3+}$  codoped silicate oxyfluoride scintillating glasses were synthesized by melt-quenching method. The luminescent properties were studied by transmission spectra, photoluminescence excitation (PLE) and photoluminescence (PL) spectra, X-ray excited luminescence (XEL) spectra and luminescence decay curves in order to reveal the roles of  $Ce^{3+}$  sensitizer in the luminescence process of  $Tb^{3+}$ activated silicate oxyfluoride scintillating glass under UV and X-ray excitation. As for  $Tb^{3+}/Ce^{3+}$  codoped scintillating glasses, the  $Ce^{3+}$  ions strongly sensitized the luminescence of the  $Tb^{3+}$  ions by energy transfer process from  $Ce^{3+}$  to  $Tb^{3+}$  ions under UV excitation. The optimal doping concentration of  $Ce_2O_3$  in  $Tb^{3+}/Ce^{3+}$  codoped scintillating glasses can be determined to be 0.6 mol%. But under X-ray excitation, the enhancement of  $Tb^{3+}$  ions emission intensity caused by  $Ce^{3+}$  codoping is not as obvious as that under UV excitation, which is mainly due to the low energy transfer efficiency from host glass to  $Ce^{3+}$  ions. Under X-ray excitation, the intensity of 544 nm emission in  $Tb^{3+}/Ce^{3+}$  codoped scintillating glasses with 0.6 mol% of  $Ce_2O_3$  was 6 times than that of 500 nm emission in the commercial Bi<sub>4</sub>Ge<sub>3</sub>O<sub>12</sub> (BGO) crystals. The integral scintillation efficiency was about 83% of the BGO crystals. These results imply that the developed silicate oxyfluoride scintillating glasses in our case can be potential candidate for high-resolution medical X-ray imaging.

© 2016 Elsevier B.V. All rights reserved.

#### 1. Introduction

Glasses activated with rare-earth (RE) ions are attractive scintillating materials due to their advantages of low-cost, easy shaping of elements, possibility to incorporate activator ions at high concentrations and ease of manufacture in different sizes and shapes [1–3]. With regard to the research of scintillating glasses, Tb<sup>3+</sup>-activated scintillating glasses have been the focus of many studies because of their high luminescent efficiency at around 540 nm, which is convenient for direct coupling with silicon detectors [4]. However, compare with scintillation crystal, the light yield of the scintillating glasses generally is low due to the presence of many trapping sites in the glass matrix, where electrons and holes can be entrapped, which will give rise to nonradiative recombination processes [5,6].

In order to improve the emission performance of  $Tb^{3+}$  ions in scintillating glass, some suitable sensitizers such as  $Ce^{3+}$ ,  $Gd^{3+}$ , and  $Dy^{3+}$ are usually doped to the glass matrix [7–9]. Among these RE ( $Ce^{3+}$ ,  $Gd^{3+}$ , and  $Dy^{3+}$ ) ions,  $Ce^{3+}$  ion is not only a high efficiency emission center, but also has been proved to be an efficient sensitizer, especially for  $Tb^{3+}$  ions. The energy transfer of the different hosts between  $Ce^{3+}$  and  $\text{Tb}^{3+}$  ions has been extensively investigated, such as borate glass [10], phosphate glass [11], aluminosilicate glass [12,13] and glass ceramics [14]. These discussions about energy transfer from  $\text{Ce}^{3+}$  ions to  $\text{Tb}^{3+}$  ions were carried out under the excitation of UV light, rare attention has been paid to the sensitizing effect of  $\text{Ce}^{3+}$  to  $\text{Tb}^{3+}$  under the high energy electrons or photons excitation. However, the application of these scintillating glasses are mainly operated under high energy electrons or photons excitation is very necessary in order to prompt their practical application.

In this work, Tb<sup>3+</sup> or Ce<sup>3+</sup> doped and Tb<sup>3+</sup>/Ce<sup>3+</sup> codoped silicate oxyfluoride glasses were successfully prepared by the melt-quenching method. The transmission spectra, photoluminescence excitation (PLE) and photoluminescence (PL) spectra, X-ray excited luminescence (XEL) spectra and luminescence decay curve were investigated systematically. In addition, energy transfer process between Ce<sup>3+</sup> and Tb<sup>3+</sup> ions and its influence on luminescent properties were discussed.

### 2. Experimental

The nominal compositions of the experimental glasses were listed in Table 1. The starting materials were analytical purity SiO<sub>2</sub>, BaF<sub>2</sub>, AlF<sub>3</sub>, BaCO<sub>3</sub> and high purity (99.99%) Gd<sub>2</sub>O<sub>3</sub>, Tb<sub>2</sub>O<sub>3</sub>, CeO<sub>2</sub> and Sb<sub>2</sub>O<sub>3</sub> powders.

<sup>\*</sup> Corresponding author. *E-mail addresses:* zhangyong@jlnu.edu.cn (Y. Zhang), ljwcc@126.com (J. Lv).

Table 1Nominal compositions of the experimental glass.

| Glass<br>samples | Composition (mol%) |         |     |                  |           |           |           |                                | Density (g        |
|------------------|--------------------|---------|-----|------------------|-----------|-----------|-----------|--------------------------------|-------------------|
|                  | SiO <sub>2</sub>   | $BaF_2$ | BaO | $\mathrm{AlF}_3$ | $Gd_2O_3$ | $Sb_2O_3$ | $Tb_2O_3$ | Ce <sub>2</sub> O <sub>3</sub> | cm <sup>2</sup> ) |
| HG               | 64                 | 5.5     | 22  | 2                | 6         | 0.5       | -         | -                              | $3.930\pm0.005$   |
| Ce1              | 63.4               | 5.5     | 22  | 2                | 6         | 0.5       | -         | 0.6                            | $3.971\pm0.006$   |
| Tb1              | 58                 | 5.5     | 22  | 2                | 6         | 0.5       | 6         | -                              | $4.315\pm0.003$   |
| TC1              | 57.8               | 5.5     | 22  | 2                | 6         | 0.5       | 6         | 0.2                            | $4.319\pm0.004$   |
| TC2              | 57.6               | 5.5     | 22  | 2                | 6         | 0.5       | 6         | 0.4                            | $4.320\pm0.003$   |
| TC3              | 57.4               | 5.5     | 22  | 2                | 6         | 0.5       | 6         | 0.6                            | $4.326\pm0.002$   |
| TC4              | 57.2               | 5.5     | 22  | 2                | 6         | 0.5       | 6         | 0.8                            | $4.348\pm0.005$   |
| TC5              | 57                 | 5.5     | 22  | 2                | 6         | 0.5       | 6         | 1.0                            | $4.356\pm0.002$   |
| TC6              | 56                 | 5.5     | 22  | 2                | 6         | 0.5       | 6         | 2.0                            | $4.366\pm0.006$   |
| TC7              | 55                 | 5.5     | 22  | 2                | 6         | 0.5       | 6         | 3.0                            | $4.376\pm0.005$   |
| TC3-0S           | 57.9               | 5.5     | 22  | 2                | 6         | -         | 6         | 0.6                            | $4.412\pm0.006$   |

The role of appropriate amount of Sb<sub>2</sub>O<sub>3</sub> is to reduce the tetravalent cerium to its trivalent one effectively in the synthesis process of glasses. About 20 g batches of well-mixed raw materials were melted at 1480 °C for 60 min in air. After melting, the liquid was cast into a preheated stainless-steel mold for quenching and annealed at 500 °C for 2 h to release its inner stress. Glass samples with the size of  $\Phi$ 20 × 2 mm were finally obtained after being cut and polished and used for the optical measurement.

Transmittance spectra were recorded with a Shimadzu UV-2700 UV—VIS spectrometer in the range of 200–750 nm. The PLE and PL spectra were collected using a Hitachi F-7000 fluorescence spectrophotometer equipped with a 150 W xenon lamp as the excitation source. Luminescence decay curves were carried out with Fluorologs-3 Horiba Scientific spectrometer, with an iHR 320 single-emission monochromator, coupled to a R928 Hamamatsu photomultiplier. The excitation source was a 450 W pulsed Xe lamp. The XEL spectra (irradiated by W anticathode target operating at 70 kV and 10 mA) were coupled to the OceanOptics QE Pro-FL spectrometer via optical lens and fibers. All the measurements were carried out at room temperature.

#### 3. Results and discussion

The densities of glasses are shown in Table 1. It is well-know that high glass density can enlarge the X-ray absorption cross-section, which will increase the signal-to-noise ratio of image. As we expected, the densities of all  $Tb^{3+}$ -activated silicate oxyfluoride scintillating glasses reach over 4.3 g/cm<sup>3</sup>, which indicate that present glasses are attractive as a potential scintillating materials.



**Fig. 1.** Transmission spectra of the host glass (HG),  $Ce^{3+}$  doped glass (Ce1),  $Tb^{3+}$  doped glass (Tb1) and  $Tb^{3+}/Ce^{3+}$  codoped glasses (TC3 and TC3-0S). Inset shows the transmission spectra of  $Tb^{3+}/Ce^{3+}$  codoped glasses (TC1-TC7).

The transmission spectra of host glass,  $Ce^{3+}$  doped or  $Tb^{3+}$  doped and  $\text{Tb}^{3+}/\text{Ce}^{3+}$  codoped scintillating glasses are presented in Fig. 1. The designed host glass (HG) without  $Ce^{3+}$  ions or  $Tb^{3+}$  ions has the shortest UV cut-off edge at approximately 294 nm. The characteristic absorption peak of Gd<sup>3+</sup> ions can be found at 312 nm [8]. With the incorporation of Tb<sup>3+</sup> ions into the host glass (Tb1), its cut-off edge shifts toward 309 nm, and several absorption peaks centered at 350, 367, 378 and 483 nm are observed, which associated with optical transitions from  ${}^{7F6}$  to  ${}^{5}L_{9}$ ,  ${}^{5}L_{10}$ ,  ${}^{5}G_{6}$  and  ${}^{5}D_{4}$  of Tb<sup>3+</sup> ions, respectively [8]. For  $Ce^{3+}$  doped glass (Ce1), the  $Ce^{3+}$  ions exhibits a broad absorption band in the UV with an cut-off edge about 354 nm, which is caused by the 4f-5d transition of  $Ce^{3+}$  ions [15]. When  $Ce^{3+}$  ions are added into Tb<sup>3+</sup> doped glass, the UV cut-off edge of glass sample TC3 shifts to 354 nm as well, which can be ascribed to the overlap of 4f-5d transition of  $Ce^{3+}$  ion on the f-f transitions of  $Tb^{3+}$  ion [16]. We further increase the Ce<sub>2</sub>O<sub>3</sub> content, the UV cut-off edges of Ce<sup>3+</sup>/Tb<sup>3+</sup> codoped glass samples shift to 383 nm, as shown in the inset of Fig. 1, which is associated with the absolute concentration of Ce<sup>4+</sup> ions elevates in the samples with higher cerium concentration [15,17,18]. The detailed explanation is as follows: The absorption of Ce<sup>4+</sup> ions is induced by a charge transfer states (CTS) from  $O^{2-}$  to  $Ce^{4+}$ , and the position of the CTS band in oxide glasses commonly locates at longer wavelength in comparison to that of  $Ce^{3+}$  ions [12,13,19].

Here we would like to point out that the Ce<sup>3+</sup> and Ce<sup>4+</sup> ions normally coexist in the glasses because cerium is one of the most active elements among lanthanide. In our case, we prefer the Ce<sup>3+</sup> in the glass, so we added appropriate amount of Sb<sub>2</sub>O<sub>3</sub> during the synthesis process of glasses to reduce the tetravalent cerium to its trivalent one effectively. To see how reducing agent of Sb<sub>2</sub>O<sub>3</sub> influence the concentration ratio of Ce<sup>3+</sup> and Ce<sup>4+</sup> in the glass, we further prepared the Tb<sup>3+</sup>/Ce<sup>3+</sup> codoped glass without adding Sb<sub>2</sub>O<sub>3</sub> (named as TC3-OS glass) to make a comparison. For TC3-OS glass, the UV cut-off edge shifts remarkably to 382 nm, which can be attributed to the presence of Ce<sup>4+</sup> ions based on the above discussion. In our case, the cut-off edge of TC3 glass shifted to 354 nm by employing a reducing atmosphere with Sb<sub>2</sub>O<sub>3</sub>, indicating that cerium mainly exists as Ce<sup>3+</sup> in glass samples.

The PLE and PL spectra for  $\text{Tb}^{3+}$  doped scintillating glass (Tb1) and host glass (HG) are illustrated in Fig. 2. The PLE spectrum is acquired by monitoring the green emission at 544 nm of  $\text{Tb}^{3+}$  ions. The overall excitation spectra are divided into two groups. The broad band around 244 nm is associated with the allowed  $4f^8 \rightarrow 4f^75d^1$  transition, and weak narrow bands located at 302 nm, 317 nm, 339 nm, 351 nm, 368 nm and 377 nm are assigned to the transitions from the ground state  $^7F_6$  to  $^5H_6$ ,  $^5H_7$ ,  $^5L_8$ ,  $^5L_9$ ,  $^5L_{10}$  and  $^5D_3$  states, respectively [8,20]. In addition, another three excitation peaks located at 274 nm, 306 nm and 312 nm can be assigned to the characteristic  $^8S_{7/2} \rightarrow ^6I_1$ ,  $^6P_{7/2}$ ,  $_{5/2}$ 



Fig. 2. PLE (a) and PL (b) spectra of Tb<sup>3+</sup> doped glass (Tb1) and host glass (HG).

Download English Version:

https://daneshyari.com/en/article/1480324

Download Persian Version:

https://daneshyari.com/article/1480324

Daneshyari.com