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Though people have experimentally studied the temperature dependence of the refractive index (RI) of optical
fibers made of amorphous silica (a-SiO2), the temperature ranges in the previous experiments are usually
below 800 K, and a rigorous theoretical model for the experimental results has still been absent. In this paper,
the temperature dependence of the RI of a-SiO2 is studied theoretically and experimentally, where by means
of an optical fiber delay line, the experiment is carried out in the temperature range of 301–1275 K for the first
time, and the theoretical result agrees well with the experimental one. Our work has potential application in
temperature sensors by means of optical fiber delay lines.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

It is significant for us to study the temperature dependence of the RI
of a-SiO2. For example, a fiber optic sensor can be devised by means of
the temperature dependence of the RI of the optical fiber [1,2]. Histori-
cally, many experimental investigations on the temperature depen-
dence of the RI of a-SiO2 have been presented [3–6], while a satisfying
theoretical explanation has still been absent. On the other hand, some
theoretical models have been presented for the temperature depen-
dence of the RI of monatomic crystals or diatomic ionic crystals
(e.g., Refs. [7–13]), but they are not valid for the material of a-SiO2. In
the previous paper [14], we have presented a theoretical study on tem-
perature dependence of the refractive index of optical fibers. However,
we are not satisfied with the starting point of the theoretical model in
Ref. [14]. Herewewill present a theoretical and experimental investiga-
tions on the temperature dependence of the RI of a-SiO2, where the the-
oretical model is more rigorous and the experiment will be carried out
in the temperature range of 301–1275 K by means of an optical fiber
delay line, for the first time.

As we know, the amorphous phase of SiO2 differs from the crystal-
line phase only by the missing long-range order, however there is
local ordering with respect to the tetrahedral arrangement of oxygen
(O) atoms around the silicon (Si) atoms. One example of this ordering
is found in the preference of the network to form rings of 6-tetrahedra
[15]. From comparison of the properties of materials in a crystalline
and an amorphous state we have learned the essential features of the
electronic structure, and thereby also macroscopic properties, are

determined by short-range order. Thus these properties are similar for
solids in crystalline and amorphous states.

Amorphous SiO2 under consideration is solid and dielectric, it only
possesses two types of dielectric behavior, that is, the polarization of
the electronic cloud around the atoms and the polarization stemming
from the motion of the charged ions. More generally, the fluctuations
of electron density distribution can induce a time-varying electric dipole
moment, which can be regarded as, equivalently, being caused by a
fixed ion core with positive charges and a vibrating electron cloud
with negative charges. All mentioned here can be taken as the starting
point that one will study the temperature dependence of the RI of a-
SiO2.

2. Theoretical investigation starting from the first principle

The main purpose of this work is to present a theoretical basis for
temperature sensors based on opticalfiber delay lines,where the optical
fiber has a coremade of high-purity silica in amorphous form, i.e., a non-
crystalline formof SiO2. As the amorphous phase of SiO2, the amorphous
silica exhibits both ionic and covalent bonding (where the fraction of
the covalent bonding is about 0.486), and consists of a non-repeating
network of tetrahedra (in the form of 6-tetrahedron rings), such that
in which the simplifications associated with periodicity are absent. To
be specific, the building block of the amorphous silica is the SiO4 unit,
where each individual SiO4 tetrahedron is connected with adjacent tet-
rahedrons at the corners, forming a three-dimensional structure.

Seeing that a-SiO2 is a non-magnetic material, its refractive index
can be expressed as n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ χ

p
(where χ is the electric susceptibility

of the medium). For a Si–O bond being parallel to a local electric field
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Ec, its induced dipole moment is p=αEc, where α is the polarizability;
however, if the angle between the direction of Ec and the one of a Si–
O bond is θ∈ [0,π/2], the induced dipole moment should be αEccosθ.
Or equivalently, if the angle between the direction of Ec and the one of
a Si–O bond is θ∈ [0,π/2], the number of the Si–O bond can be taken
as cosθ. In such a sense, let N denote the average number of Si–O
bonds along the direction of Ec per unit volume, then the intensity of
polarization isP=Np=NαEc. Although obtaining an exact equation de-
scribing the local electric field is difficult, for convenience, let us assume
that Ec is expressed as Ec=E+bP [16,17], where b is a constant which
may be considered as a measure of the overlap of the total polarization
P, then using P=ε0χE (where ε0 is the vacuum permittivity) one can
obtain the following formula:

n2−1
1þ bε0 n2−1ð Þ ¼

Nα
ε0

: ð1Þ

The proposed potentials describing the interactions between the
ions in silica are (for our purpose, we will just take into account the in-
teractions between the Si and O ions within a Si–O bond in silica) [18–
20],

u rð Þ ¼ e2

4πε0
qSiqO
r

þ A exp −Brð Þ− C
r6

; ð2Þ

where qO=−1.2, qSi=2.4, and r=|rSi−rO| is the distance between
the Si and O ions in a Si–O bond (rSi and rO are the position vectors of
the Si and O ions, respectively). The values of the parameters A, B and
C can be found in Refs. [18,19], that is: A = 18,003.7572 (eV), B =
4.87318 (Å−1), C = 133.5381 (eV Å6).

As we know, a-SiO2 consists of positively charged ion cores and neg-
atively charged valence electrons and as awhole it is electrically neutral.
Because of thermal vibrations, these two regions of charge can deviate
from their equilibrium positions (r=r0), which will induce electric di-
pole moments. When the distance between two adjacent Si and O
atoms becomes r=r0+R, where R=r−r0 is very small, by means of
a Taylor expansion the interaction energy u(r) can be written as, ap-
proximately

u rð Þ≈u r0ð Þ þ 1
2
u″ r0ð ÞR2 þ 1

6
u‴ r0ð ÞR3; ð3Þ

where u′(r0)=0 because of r=r0 being the equilibrium position. Using
Eq. (2) one has

u″ r0ð Þ ¼ e2qSiqO
2πε0

1
r30

þ AB2 exp −Br0ð Þ−42C
r80

; ð4Þ

u‴ r0ð Þ ¼ −
3e2qSiqO
2πε0

1
r40

−AB3 exp −Br0ð Þ þ 336C
r90

: ð5Þ

The potential energy of an oscillator with the equilibrium position of
R = 0 is

V Rð Þ ¼ u rð Þ−u r0ð Þ ¼ κR2=2−βR3; ð6Þ

where κ=u″(r0)N0 and β=−u‴(r0)/6N0, the former results in an at-
tractive potential energy for atoms to vibrate about their equilibrium
positions, while the latter represents a repulsive potential to keep the
stability of the lattice. The anharmonic term of −βR3 in Eq. (6) comes
from a repulsive energy. To guarantee the result of β=−u‴(r0)/6N0,
we take the parameter C = 132.3225 (eV Å6), instead of C =
133.5381 (eV Å6), while the parameters A = 18,003.7572 (eV) and
B = 4.87318 (Å−1) are still the same as those in Refs. [18,19]. In terms
of SI, they are, A = 2.884526 × 10−15 (J), B = 4.87318 × 1010 (m−1),
and C = 2.120045 × 10−77 (Jm6). Using u′(r0)=0 one has r0=
1.384316×10−10 (m). Then using κ=u″(r0), β=−u‴(r0)/6 and

Eqs. (4)–(5) one can obtain κ=9.49171×102 (Jm−2) and β=
1.979×108 (Jm−3).

Under the local electric field Ec, the total energy of an oscillator can
be expressed as

H ¼ p2=2mþ V Rð Þ−qEcR; ð7Þ

where Ec=|Ec | and p=|p |, p is the momentum of the oscillator, m is
themass. According to statistical mechanics, by means of the derivation
processes similar to those in Ref. [14], one can show that the average in-
tensity of polarization is, approximatively,

P≈N q2=κ þ 3βqkBT=κ2Ec
� �

Ec ≡NαEc; ð8Þ

where kB is Boltzmann's constant and T is the absolute temperature, and
the polarizability is

α ¼ q2=κ þ 3βqkBT=κ2Ec ≡ Aþ BT; ð9Þ

where

A ¼ q2=κ ; B ¼ 3qβkB=κ2Ec: ð10Þ

Using Eqs. (1) and (9), one has

n2−1
1þ bε0 n2−1ð Þ ¼

N Aþ BTð Þ
ε0

: ð11Þ

We will show that BT≪A, and then using Eq. (11) one has

n2 ¼ 1þ N Aþ BTð Þ
ε0 1−bN Aþ BTð Þ½ �≈1þ N Aþ BTð Þ

ε0 1−bNAð Þ
¼ 1þ NA

ε0 1−bNAð Þ þ
NBT

ε0 1−bNAð Þ : ð12Þ

Under the condition of BT≪A, one has

NBT
ε0 1−bNAð Þ≪1þ NA

ε0 1−bNAð Þ : ð13Þ

Using Eq. (13), it follows from Eq. (12) that

n≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ NA

ε0 1−bNAð Þ

s
þ NB

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε0 1−bNAð Þ ε0− ε0b−1ð ÞNA½ �

p T: ð14Þ

Substituting Eq. (10) into Eq. (14), Eq. (14) becomes

n≈n0 þ aT; ð15Þ

where

n0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε0κ þ 1−bε0ð ÞNq2

ε0κ−bε0Nq2

s
; ð16Þ

a ¼ 3NqβkB
2κEc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε0 κ−bNq2ð Þ ε0κ þ 1−bε0ð ÞNq2½ �

p : ð17Þ

Eqs. (15)–(17) imply that, the RI of a-SiO2 is directly proportional to the
temperature T. Obviously, the temperature-dependent term vanishes
for β = 0, and then it is related to the anharmonic term in Eq. (6),
which implies that, in terms of quantum field theory, the
temperature-dependent term arises from the phonon–phonon
interactions.

Let us present a quantitative consideration. Using Eqs. (16) and (17),
one can rewrite Eq. (17) in terms of n0,

a ¼ 3βkB n2
0−1

� �
2κqEcn0

: ð18Þ

199Y. Guo et al. / Journal of Non-Crystalline Solids 429 (2015) 198–201



Download English Version:

https://daneshyari.com/en/article/1480542

Download Persian Version:

https://daneshyari.com/article/1480542

Daneshyari.com

https://daneshyari.com/en/article/1480542
https://daneshyari.com/article/1480542
https://daneshyari.com

