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The role of atomic-scale structural heterogeneity (ASSH) in the elastic modulus for metallic glasses (MGs) is
investigated. A strategy for estimating the strength of ASSH in MGs is proposed and then the fraction of ASSH
is obtained. It is found that the fraction of ASSH could be the basic entities responsible for the change of elastic
modulus during the change of composition and structure relaxation in MGs.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

As promising functional and structural materials, metallic glasses
(MGs) possess excellent mechanical, magnetic, and chemical proper-
ties; and these unique properties are believed to be closely related to
their disordered atomic structures [1–3]. It is, therefore, essential to
study this disordered structure for better understanding and then tailor-
ing these materials with desired properties [4]. Although MGs are iso-
tropic and homogeneous on macroscale, recent studies have found the
existence of the loose or weakly bound atoms in the oversized cages,
voids, or similar defects, named as atomic-scale structural heterogeneity
(ASSH) [5] besides short- and medium-range order clusters [6]. Such
microstructure may affect the elastic deformation of MGs as well [7].
Some of the studies also suggest that the elastic deformation in MGs
mainly occurs at solvent–solvent junctions among solute-centered clus-
ters; and the elastic modulus is essentially determined by solvent–sol-
vent bonding [8,9]. However, extensive experiments illustrate that the
elastic modulus is very sensitive to the minor change of composition
which may lead to the appearance of ASSH in MGs [10]. This induces
the following interesting question: how does the ASSH affect the elastic
modulus of MGs? It has been proven that the excess low frequency

vibrational contribution appears as a bump in Cp,Latt/T3–T curves
(Cp,Latt is the lattice specific heat and T is the temperature), which is sig-
nificantly affected by structural heterogeneity inMGs [11–13]. Thus, the
study of the excess low frequency vibrations may help understand the
role of ASSH in elastic modulus for MGs. In this paper, we study
(Fe1 − xCox)72B20Si4Nb4 (x = 0.1, 0.3, 0.5, and 0.7) to investigate the
role of ASSH in elastic modulus for MGs. It will provide guidance for
the substitution of an element for varying mechanical properties in
MGs.

2. Experimental

(Fe1 − xCox)72B20Si4Nb4 (x = 0.1, 0.3, 0.5 and 0.7) and
(Fe0.5Co0.5)72B20Si4Nb4 MGs are prepared by arc melting the mixture of
Fe (99.99%), Co (99.99%), Nb (99.99%) metals and B (99.50%), Si
(99.99%) crystals in an argon atmosphere, (Fe0.5Co0.5)72B20Si4Nb4 MG is
annealed at 823, 873, and 923 K for 0.5 h in vacuum. Cylindrical alloy
rods are produced by copper mold casting method [14]. The glassy na-
ture is ascertained by X-ray diffraction (XRD), differential scanning calo-
rimeter (DSC) and transmission electronmicroscopy (TEM). The isobaric
low temperature specific heat Cp of as-cast (Fe1 − xCox)72B20Si4Nb4 (x=
0.1, 0.3, 0.5, and 0.7) MGs and annealed (Fe0.5Co0.5)72B20Si4Nb4 metallic
glass (MG) are measured by the Physical Property Measurement System
(PPMS6000) with disk shape (∼0.5 mm in thickness). The relative error
for the specific heat measurements is less than 2%. Elastic modulus is
measured using ultrasonic method. The rods (~3.0 mm) are cut to 6.0–
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8.0 mm in length and their ends are carefully polished flat and parallel.
The acoustic longitudinal and transverse velocities are measured using
pulse echo overlap method by a MATEC 6600 model ultrasonic system
[9]. The final data were obtained by averaging 3 experimental results.
The relative error for the ultrasonic measurements is less than 5%. The
densities of the specimens are measured using Archimedes's method
with an accuracy of about 2%.

3. Results and discussion

Fig. 1 exhibits (Cp−γT) / T3 vs T for (Fe1− xCox)72B20Si4Nb4 (x=0.1,
0.3, 0.5, and 0.7) MGs, where, Cp is the low temperature specific heat,
and γ is the electronic specific heat coefficient with values 6.96, 6.26,
5.92, and 5.72 mJ/mol K2 for (Fe1 − xCox)72B20Si4Nb4 (x = 0.1, 0.3, 0.5,
and 0.7) MGs, respectively, depending linearly on the temperature
[15]. From Fig. 1, it can be seen that there exists excess peaks of
specific heat in 10–50 K temperature regions in the metallic glassy
systems.

According to the solid state theory, the low temperature specific
heat Cp can be assumed to be consisted of three terms

Cp ¼ Ce þ CM þ CL ð1Þ

where Ce = γT represents the electronic contribution to Cp, CM = δT3/2

the magnetic contribution [16], and CL the lattice specific heat, which
originates from the Debye oscillator and Einstein oscillators. Here
Einstein oscillators are mainly responsible for ASSH in MGs, such as
the loose orweakly boundatoms in the oversized cages, voids, or similar
defects in the case of complex materials [17]. It seems that the experi-
mental curves presented in Fig. 1 have two minimums, which mean
that two distinct Einstein-type vibration modes exist in the MGs [15].
However, the second Einstein-type vibration mode is relatively small

[19], and then it can be ignored in this work. Then, the lattice specific
heat CL can be expressed as

CL ¼ 1− fð ÞCD þ f CE ð2Þ

where f is the fraction of ASSH in the glassy state; CD ¼ 3Rð TθDÞ
3

∫
θD=T

0

ξ4eξ

ðeξ−1Þ2
dξ , the contribution of Debye term, with θD the Debye

temperature; and CE ¼ RðθET Þ
2 eθE=T

ðeθE=T−1Þ2
, the contribution of Einstein

mode, with θE the Einstein temperature, and R the gas constant.
Then the relationship between (Cp − γT) / T3 and T can be drawn as

Cp−γT
T3 ≈

234R 1− fð Þ
θ3D

þ f Rθ2E
T5

eθE=T

eθE=T−1ð Þ2
þ δT−3=2: ð3Þ

The comparisons of theoretical values and experimental data of
(Cp − γT) / T3 vs T for (Fe1 − xCox)72B20Si4Nb4 (x = 0.1, 0.3, 0.5, and
0.7) MGs are also shown in Fig. 1. It can be seen that the theoretical
lines are consistent with the experiments. The values of Debye temper-
ature θD, Einstein temperature θE and magnetic specific heat coefficient
δ obtained from the least-squares fit of the present data to Eq. (3)
are summarized in Table 1. The presence of the relatively large δ
coefficient means a substantial deviation of magnetic ions from the
lattice specific heat CL, occurring at relatively low temperatures for
(Fe1 − xCox)72B20Si4Nb4 MGs. It can be also seen from Table 1 that the
ratio of θD to θE is around 5. These results are in good agreement with
Ref. [19]. The expression of θD and θE can be unified as

θi ¼
ℏωi

kB
ð4Þ
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Fig. 1. Standard plotting of (Cp − γT) / T3 versus T for (Fe1 − xCox)72B20Si4Nb4 (x=0.1, 0.3,
0.5 and 0.7) MGs. The fitting lines from experimental data with Eq. (3) are also shown.

Table 1
Terms from fits to Eq. (3) for the low temperature specific heat of (Fe1− xCox)72B20Si4Nb4 (x= 0.1, 0.3, 0.5 and 0.7) MGs. The Debye temperatures of solvent components are also listed.

Metallic glasses Base metal θDa θD
(K)

θE
(K)

δ
(mJ/mol K5/2)

(Fe0.9Co0.1)72B20Si4Nb4 Fe 470 480 ± 10 90 ± 5 0.103
(Fe0.7Co0.3)72B20Si4Nb4 Fe 470 475 ± 5 93 ± 3 0.116
(Fe0.5Co0.5)72B20Si4Nb4 Fe/Co 470/445 460 ± 10 95 ± 5 0.147
(Fe0.3Co0.7)72B20Si4Nb4 Co 445 450 ± 15 100 ± 5 0.165

a Reference [18].
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Fig. 2. The average ratio of θD for various MGs and their solvent.
Data are taken from Ref. [18,23].
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