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Changes of the shearmodulus and heat effects occurring upon structural relaxation and crystallization ofmetallic
glasses are analysed within the framework of two approaches, the Interstitialcy theory and elastic dipole model.
The former approach assumes that elastic and heat effects are determined by dumbbell interstitial defects
inherited from the melt. The analysis within this framework is based on the postulate that the internal energy
change is proportional to the shear modulus and defect concentration change. The elastic dipole model takes
into account that dumbbell interstitials are in fact elastic dipoles and the change of the internal energy is deter-
mined by their elastic strain fields, which are consideredwithin the framework of non-linear theory of elasticity.
In spite of fully different phenomenology, both approaches lead to very similar theoretical expressions for the
elastic and heat effects. The interconnection between these approaches, their advantages and problems are
discussed.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

It is well known that ageing of metallic glasses is accompanied by
exothermal and endothermal heat effects and simultaneously leads to
the changes of their shear elasticity [1–3]. These phenomena are ob-
served both below the crystallization onset temperature and above it,
i.e. in the range of structural relaxation within the glassy state as well
as upon crystallization. While irreversible structural relaxation below
the glass transition temperature Tg leads to the heat release, reversible
structural relaxation near and above Tg results in either heat absorption
(upon heating) or heat release (upon cooling) and crystallization is al-
ways accompanied by the heat release. Independent of the temperature
range, heat release always leads to an increase of the shear modulus
while heat absorption always results in its decrease [4,5]. In the litera-
ture, heat effects and shear modulus changes taking place within the
glassy state are discussed using different approaches [1–3]. Heat release
induced by crystallization is considered in a general sense as a conse-
quence of lower internal energy of the reference crystal (i.e. the one,
which was used for the glass production) [6]. Shear modulus growth
upon crystallization is interpreted as the disappearance of additional in-
ternal atomic displacements, which are characteristic of non-crystalline
state [6,7]. In any case, specific atomic mechanisms responsible for heat

effects and shearmodulus changes occurringupon annealing of glass re-
main a subject of long-term debates.

A unified approach to these phenomena is suggested within the
framework of the interstitialcy theory proposed by Granato [8,9].
While this theory was initially tested on FCC copper, it is now generally
accepted that dumbbell (split) interstitials (=interstitialcies) exist in all
main crystalline structures and represent the basic state of interstitials
in simple metals [10,11]. The topological features of these defects in
complex (two- or multiatomic) materials are quite similar [9] and,
therefore, the theory is expected to be valid for alloys as well. Granato
argued that melting of metals takes place through rapid multiplication
of interstitialcy defects, which leads to a drastic decrease of the shear
modulus and loss of the shear stability [8,9,12]. A vanishing shear mod-
ulus is a signature of liquid [13]. Interstitialcy defects retain their indi-
viduality in the liquid state [14] and can be considered as structural
heterogeneities. The “string” atoms, which were repeatedly noticed in
computer simulations of supercooled liquids and glasses [15,16], resem-
ble the signatures of interstitialcies in crystals [14,17]. In crystals,
the “string” character of interstitialcies is quite evident, since external
loading brings into string-like motion several tens of atoms around
the defect nucleus [18].

Melt quenching freezes a part of these defects in solid glass. Structur-
al relaxation and crystallization are then interpreted as a change of the
concentration of interstitialcy defects leading to an increase/decrease
of the shear modulus and related exothermal/endothermal heat effects
depending on temperature and preliminary heat treatment [4,5]. This
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conceptual framework offers qualitative and quantitative explanations
for quite a few effects associated with structural relaxation and crystal-
lization of metallic glasses (for a review, see Ref. [5]). In particular, it be-
comes possible to relate the heat effects occurring upon structural
relaxation and crystallization of metallic glass with the relaxation of
the shear modulus.

A fully independent but nonetheless closely related to the
Interstitialcy theory approach to these issues was recently suggested
in Ref. [19]. It is based on the fact that dumbbell interstitials represent
a particular case of “elastic dipoles” — atomic configurations with the
local symmetry lower than that of the surrounding matrix [20]. These
defects create local internal strains, which lead to an increase of the in-
ternal energy, interaction with the applied shear stress and related
shear softening of glass. The hypothesis on the presence of such defects
in glassy structure leads to relatively simple equations connecting
the changes of the internal energy (which can be released as heat)
and shear modulus with the concentration of elastic dipoles. Special
investigations revealed a good agreement of the calculation with the
experimental data for both structural relaxation and crystallization of
metallic glasses [4,19].

The purpose of the present work consists in i) comparative analysis
of the results on the relationship between elastic and thermal effects in
metallic glasses obtainedwithin the framework of the Interstitialcy the-
ory [8,9] and elastic dipolemodel [4,19] and ii) derivation of generalized
interrelations based on the peculiarities and advantages of both ap-
proaches. Our main conclusion is that in spite of fully different starting
points, these approaches lead to very close mathematical expressions,
which describe the changes of the shear elasticity and heat effects in
metallic glasses. The heat effects are intrinsically connected with shear
modulus relaxation through the concentration of interstitialcy defects
(or, equivalently, elastic dipoles).Within this framework, crystallization
leads simply to the disappearance of these defects determining the
change of the shear modulus.

2. Interstitialcy theory

The principal hypothesis of the Interstitialcy theory is that the
change of the internal energy U per unit mass due to a change of the
interstitialcy defect concentration c in a crystal can be accepted as [8,9]

ρ∂U≈ αG∂c ð1Þ

where ρ is the density, α is a phenomenological dimensionless constant
and G is the shear modulus. Eq. (1) implies that the change of the inter-
nal energy is dominated by the shear deformation. Using the definition
of the shear modulus as the second derivative of the elastic energywith
respect to the shear strain [21], Granato writes down the change of the
shear modulus with the defect concentration in the form [8]

∂G
∂c

¼ α
∂2G
∂ε2

; ð2Þ

where ε is the shear strain. The requirement that the shear modulus in
crystal must be an even periodic function of the shear displacement in

the simplest the case leads to the relation 1
4
d2G
dε2 ¼ −βG , where β is

dimensionless “shear susceptibility”. Since the second derivative of the
shear modulus with respect to the shear strain represents the 4th-
order shear modulus, the shear susceptibility is then equal to the ratio
of this modulus to the shear modulus (i.e. to the 2nd-order shear mod-
ulus) taken with the opposite sign. A qualitative estimate of the shear
susceptibility given by Granato is 4π2 [8]. Eq. (2) leads to the depen-
dence of the shear modulus on the interstitialcy defect concentration
[8,9],

G ¼ μ exp −αβcð Þ; ð3Þ

where μ is the shear modulus of defect-free reference crystal. Using a
numerical fit for copper, Granato estimated that α ≈ 1 [8]. It is seen
that with β mentioned above, the dependence (3) gives a very strong
decrease of the shear modulus with interstitialcy defect concentration.
Eq. (3) actually constitutes the main equation of the Interstitialcy
theory.

In general, the above consideration applies to the crystalline state.
However, assuming that interstitialcy defects in glass are indeed
inherited from the melt as sketched above, Eq. (3) can be applied to
the glassy state. Then, the defect concentration can be precisely moni-
tored bymeasurements of the shearmodulus. It is also worthy of notice
that Eq. (1) does not include any volume effects (dilatation) related to
the defect structure.1 This agrees with laterworks [4,19], which showed
that the volume effects are indeed insignificant for the consideration of
elastic and heat effects in metallic glasses.

The application of Eq. (3) for an analysis of structural relaxation of
glass gives a number of successful interpretations of structural
relaxation-induced phenomena in metallic glasses (see Ref. [5] for a re-
view and related citations). Structural relaxation within the framework
of this approach results in a change of the interstitialcy defect concen-
tration, which through Eq. (3) alters the shear modulus while the latter
defines the activation free energy for the relaxation in the defect struc-
ture. The defect concentration c then becomes dependent on tempera-
ture and thermal prehistory. The corresponding example is shown
in Fig. 1, which gives defect concentration dependence in bulk glassy
Pd40Ni40P20 in the initial state (run 1) and after heating into the
supercooled liquid region (run 2) [22]. In the initial state, c is about
2.3% (similar concentrations are typical of other metallic glasses [5])
and slowly decreases with temperature manifesting irreversible struc-
tural relaxation. At about Tg, c rapidly increases leading to a decrease
of the shear elasticity and drop of the shear viscosity. Because of signif-
icant irreversible structural relaxation occurring after heating into
the supercooled liquid region and cooling back to room temperature,
the 2nd heating run starts at notably smaller c. It is interesting to note
that due to large underlying relaxation time, the main part of irrevers-
ible structural relaxation takes place not upon heating, as one would
expect, but upon cooling, as pointed out in Ref. [23]. Such a behavior is
characteristic of metallic glasses [5]. It is also worthy of notice that
quenching of glass to room temperature after certain heat treatment
below and near Tg leads to the quenching of current defect concentra-
tion. It is then becomes possible using c(T) dependence (Fig. 1) and
Eq. (3) to predict the effect of high temperature annealing on room-
temperature shear modulus of metallic glass [24].

Structural relaxation results in a change of the internal energy,
which is manifested as heat effect. The latter can be calculated as
follows. Combining Eqs. (1) and (3), one obtains the change of the inter-
nal energy,

ρΔU ¼ μ
β

1− exp −αβcð Þ½ � ¼ μ
β

1−G=μð Þ: ð4Þ

It is seen that the increase of the internal energy is determined by
the interstitialcy concentration,which is reflected by the shearmodulus.
In turn, a decrease of the defect concentration in glass leads to the re-

lease of the enthalpyH (per unit mass) defining the heat flowW ¼ dH
dt ¼

T
�
dH
dT, where t, T and Ṫ are time, temperature and heating rate, respective-

ly. Accepting the vanishing role of volume effects and taking into ac-
count Eq. (1), the heat flow at constant pressure becomes

W≈ T
�
dU
dT ¼T

�
αG
ρ

dc
dT . Expressing the defect concentration from Eq. (3)

1 Actually, Granato [8,9] considered the second term in Eq. (1), which reflects the
changes of the elastic energy due to the dilatation upon interstitialcy concentration
change. However, numerical fit for copper showed that this term can be neglected.
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