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The existence of crystalline-like ordering in melt-quenched glasses is still a subject of debate in the literature,
although it is not such an emotive issue as it was during the almost 50 years of the great crystallite vs. random
network controversy. However, whereas the latter is now relegated to history, arguments concerning the extent
(if any) of crystalline-like ordering in glasses still arise, especially in connection with newly discovered glass-
forming systems. The objective of the present paper, therefore, is to present a rational discussion of the present
perception of the relationship between the structures of vitreous and crystalline phases and that of themelt from
which they are formed. The limitations of the various experimental techniques for studying the intermediate-
range order in glasses are assessed, together with the role of chemistry in determining both the short- and
intermediate-range order. It is concluded that, whilst there are no unambiguous data that uniquely establish
the presence of crystalline-like ordering in glasses, there is strong circumstantial evidence for its existence, e.g.
in respect of their devitrification behaviour, and especially of that for glasses having more than one component.

© 2013 Published by Elsevier B.V.

1. Introduction

“One question more than any other has focused the efforts of those
working on the structure of glasses. This is the extent to which the
atomic structure can be considered to be uniform, continuous, with
randomness at the heart. Alternatively, is the structure essentially
inhomogeneous, granular, with some close relationship to the struc-
ture of a neighbouring crystalline phase?”

[Philip Hedley Gaskell (1998) [1]]

The relationship between the structure of glasses and that of related
crystalline phases has long been a subject of considerable debate in the
scientific literature, as evidenced by the great (Russian) crystallite vs.
(Western) random network controversy [2], which dominated glass
research for over 40 years. Even today the extent to which there is
crystalline-like ordering in glasses remains controversial, although it is
nowmore than 40 years since the final conference [2,3] that effectively
marked the demise of the (early) crystallite theory. Hence the time has
come for a rational and unbiased consideration of the evidence for and
against the presence of crystalline-like ordering in melt-quenched
network glasses and, in particular, to try to answer the long-standing
question.

Just how non-crystalline are non-crystalline solids?

The present paper will review the evidence for the extent of any
crystalline-like ordering in melt-quenched network glasses in the
light of the data provided by modern experimental and modelling
techniques, all of which have been developed and/or greatly im-
proved since the crystallite and random network theories were ac-
tively proposed during the 1920s and 1930s. Only melt-quenched
network glasses, as defined in Ref. [4], will be considered here, but
much will also apply to amorphous network solids prepared by
methods other than melt-quenching (e.g. vapour-deposited thin
films), and to both glasses (e.g. metallic, invert and molecular) and
related amorphous solids having structures for which a random
packing model is more appropriate. Similarly, discussion will mainly
be limited to chemically-ordered single-component glasses such as
vitreous silica, together with a few binary systems.

2. Crystalline concepts

One of the problems associated with the controversy between
supporters of the crystallite and random network theories [2] is that
the concept of a crystallite, and hence that of crystalline-like ordering,
has evolved over time. This is further compounded by the fact that the
meaning associatedwith the Russianword “kristallit” is not easily trans-
lated into English [2,3]. Thus, before examining the experimental
evidence for and against crystalline-like ordering in melt-quenched
network glasses, it will be helpful to briefly summarise the various
theories, concepts and models that have been proposed concerning
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the structure of network glasses. However, the present paper will not
include a detailed history of their development, since this is addressed
elsewhere [2,3,5].

2.1. (Early) Crystallite theory

The very first concept concerning glass structure [6], which subse-
quently became known as the (early) crystallite theory, was proposed
by Frankenheim [7] in 1835, and later invoked by Lebedev [8] in his
famous paper of 1921. The structure is envisaged as comprising an
agglomeration of discrete crystallites, with a distribution of crystallite
sizes and discontinuous bonding across the interface between crystal-
lites; i.e. the crystallites are separated by some formof “grain boundary”.
The early crystallite theory was supported by the X-ray diffraction data
of Randall et al. [9–11], the estimated crystallite volume fraction being
~0.8 [12]. Theword crystallitewas first used in connectionwith glasses
by Rosenhain [13] in 1927.

That a clear, transparent glass can contain a large volume fraction of
small crystallites is clearly demonstrated by Vogel's [14] electronmicro-
graph of a binary magnesium phosphate glass. However, this is very
much an exception, and crystallites of this size would be easily detect-
able by X-ray or neutron diffraction.

2.2. Colloidal theory

Before the advent of X-ray diffraction, amorphous solids were
identified via their isotropic properties, rounded shape (minerals),
lack of cleavage planes and etch pits with circular boundaries, the min-
imum size of any detectable crystallites being limited by the resolving
power of contemporary optical microscopes. Thus amorphous solids
included colloidally-derived minerals, etc., and some authors (e.g. von
Weimarn [15–17]) proposed a continuous gradation from glasses,
through colloidally-based, to polycrystalline and eventually to single-
crystalline materials, a concept that was supported by Randall et al.
[11] as late as 1930.

2.3. Random network theory

Diametrically opposed to the crystallite theory is the idea that, with-
in the confines of stereochemistry, glass structure is entirely random in
nature. The hypothesis that glasses comprise a random array of atoms
linked by directional bonding was first proposed by Rosenhain [13],
and later taken up by Zachariasen [18] in his well-known paper of
1932. The term random network was, however, first introduced by
Warren [19] in 1933.

2.4. Cybotactic theory

Although sometimes referred to as the modern crystallite theory
[20], to avoid confusion, this approach is better named the cybotactic
theory, since it extends Stewart's [21,22] concept of cybotactic group-
ings to the vitreous state. It was introduced by Valenkov& Porai-Koshits
[23] in 1936 and further defined by Lebedev [24] in a paper of 1940, and
proposes that, in the vitreous state, there are fluctuations in the degree
of order, with more ordered regions (frozen-in cybotactic groupings),
having a structure approaching that of related crystalline phases,
being inter-connected by those of lower order, but with continuous
bonding throughout.

2.5. Layer structures

In early diffraction studies of chalcogenide glasses, it was observed
that the first peak in the diffraction pattern was very sharp, and at ap-
proximately the same relatively low scattering vector magnitude, Q, as
a Bragg peak for a related crystalline phase with a layer-structure, the
Bragg peak being that corresponding to the inter-layer spacing. Hence

it was suggested (cf. Refs [25,26]) that the glasses also have a layer
structure. However, many of the problems associated with crystallites
also apply to extreme layer models, as discussed in Section 11.

2.6. Pseudo-lattice planes

The concept of quasi-lattice planes in network glasses is discussed
in papers by Gaskell [1,27], as an explanation of the origin of the first
peak in the diffraction pattern for a network glass. Alternatively [28],
the “walls” of the network cages can act as pseudo-planes for “Bragg”
diffraction. The most important question concerns the relationship
between the atomic arrangement in such “planes” and that in the corre-
sponding planes of related crystalline phases that give-rise to the equiv-
alent Bragg peak.

2.7. Crystalline-like ordering

Crystalline-like ordering in glasses can occur at two different levels,
depending on the network distortion. If the network distortion is negli-
gible, the atomic co-ordinates should map directly onto those of the
crystalline phase, as defined by the crystalline unit cell. This will be
termed atomic crystalline ordering. However, if there is significant
network strain, the atomic co-ordinates will deviate from those defined
by the crystal but, nevertheless, the network topology may still map
onto that of the crystalline phase, thus retaining topological crystalline
ordering.

3. Experimental evidence

Modern experimental techniques for studying glass structure have
improved greatly in both accuracy and resolution, compared to the
time (1930s) of the initial objections to the (early) crystallite theory,
and hence should provide amuchmore stringent test of theories invok-
ing crystalline-like ordering in glasses. However, useful information can
only be obtained from those techniques that can probe structure
beyond the basic structural units, or network-modifying-cation first
co-ordination shells, and especially from those that are direct (i.e. do
not rely on “finger-printing” by comparison with related crystalline
materials) and can probe the intermediate-range order over ranges of
inter-atomic distance, r, up to and beyond 10 Å. In this respect, the
most important techniques are X-ray and neutron diffraction and so,
for this reason, it is necessary to clearly establish the form of the diffrac-
tion pattern, I(Q) and the real-space correlation function, T(r),1 for a
single-phase network glass.

The real-space total correlation function, T(r), for a network glass
comprises a series of peaks that become broader with increasing r,
due to the inherent disorder characterising the amorphous solid state.
The highest frequency Fourier components in reciprocal space, there-
fore, decay more rapidly, since they arise from the broadest features at
the longest distances in real space. Hence the resulting interference
function, Qi(Q), and diffraction pattern, I(Q), similarly have peaks that
increase in width with increasing scattering vector magnitude, Q. The
rapid decay of the highest frequency Fourier components means that
the first peak in the diffraction pattern of an amorphous solid is usually
the sharpest and, as such, it has attracted a great deal of attention in the
literature. The structural origins of this often-named first sharp
diffraction peak (FSDP) will be discussed in Section 11 but, at this
point, it is perhaps worth making a few general comments to dispel
some of the mysticism and misunderstanding with which this feature
has been associated. First, and this seems to be completely lost on
many authors who claim special importance for the first diffraction
peak, any diffraction pattern with peaks must by definition have a first
peak, and the fact that this is usually the sharpest means that it is also

1 For a more detailed definition of the functions used in this paper, see Ref. [29].

5A.C. Wright / Journal of Non-Crystalline Solids 401 (2014) 4–26



Download English Version:

https://daneshyari.com/en/article/1480872

Download Persian Version:

https://daneshyari.com/article/1480872

Daneshyari.com

https://daneshyari.com/en/article/1480872
https://daneshyari.com/article/1480872
https://daneshyari.com

