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The structure of oxide glasses is described in terms of the local atomic environment of cations, and a key role is
played by cation-oxygen coordination numbers (CN) and coordination polyhedra. There are no preferred axes in
an isotropicmaterial like a glass, so the description of coordination polyhedramust be rotationally invariant. Here
a new analysis is presented using the second order rotational invariant Ql which are based on the spherical har-
monic coefficients Clm of the coordination polyhedra. TheQl are related to crystalfield strength parameterswhich
are reported in the studies of rare earth luminescence. There are few previous studies of rotational invariants and
they tend to focus on hard sphere and Lennard–Jonesmodels, and to focus on Ql with l even. Here results are pre-
sented for Ql of Si, Na, Mg, Ca, Ba, and Eu cations in molecular dynamics models of silicate glasses including a
15,100 atommodel of Eu-doped sodium silicate glass. For Si with CN= 4 the Ql are very similar to those for tet-
rahedra, and variations in tetrahedral distortion are apparent in different glasses. For Na with CN= 5 the Ql are
similar to those for a random distribution, except for l = 1 and 2 where the non-overlap of neighbouring atoms
prevents a truly randomdistribution. The values of Ql forMg cationswith CN=4 and CN=5 show similarities to
those for Al cations with CN= 4 and Na cations with CN= 5 respectively. The values of Ql for Ca and Ba cations
with CN= 6 differ from those for a random distribution for Ql with l≤ 4. For Eu with CN= 6 the Ql are between
those for octahedral and for a trigonal prism geometries. For all cations there are significant values for Ql with l
odd.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The structures of crystalline solids are appropriately described using
concepts of exact symmetry, e.g. the space group of the unit cell, which
are inappropriate for non-crystalline materials. Instead, the structures
of glasses are appropriately described using functions which focus on
short range order, and can quantify the degree of order on continuous
scale (i.e. varying from completely random to crystalline). Short range
order in the form of bond lengths and coordination numbers (CN) re-
sults from chemical interactions, can be measured using structural
techniques such as diffraction, and can be represented by the pair distri-
bution function [1]. Coordination geometries of atoms can be described
using the bond angle distribution function, readily obtained from atom-
istic models but more difficult to obtain from experiments [1]. Here we
look at the use of alternative parameters, referred to as rotational invari-
ant Ql, for describing the type of and degree of order in coordination
geometries.

The use of rotational invariants to describe non-crystalline struc-
tures has been reported in previous studies,where the same parameters

may also be referred to as “spherical invariants” or “bond orientational
order parameters”. (The definition of rotational invariants will be
given in Section 2). Probably the most well-known study is by
Steinhardt et al. [2]. That study used bondorientational order parameter
Ql to characterise the order in coordination geometries of atoms in
Lennard–Jones (LJ) liquids and dense random packed models, and a re-
semblance to icosahedral geometry was proposed. Interestingly,
though, the values of Ql were only presented for l even, despite the
fact that values of Ql for l odd will be non-zero when there is no
centrosymmetry. A later study [3] reported values of Ql for l even and
odd for LJ liquids, and since Ql with l odd were found to be large, that
study questioned the hypothesis of icosahedral geometry (which has
zero values for Ql with l odd). The present study reports values of Ql in-
cluding l odd for cations in silicate glasses, and to our knowledge, is the
first such report for non-crystalline structures which are not dense
packed.

Silicate glasses are the main representative of oxide glasses, and the
structural organisation of oxide glasses is based on cations with differ-
ent structural roles (e.g. [4]). Network formers have well-defined
short range order, the archetypal example being Si, which always has
a tetrahedral coordination with a relatively undistorted geometry. Net-
work modifiers, such as Na, have variable CNs with less well-defined
coordination geometry. These differences follow from the different
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interatomic interactions of Si and Na with oxygen, and are observed in
both sodium silicate crystals and glasses. Some cations fall on a spec-
trum between the clearcut cases of Si and Na, and may sometimes be
considered “intermediates”. Fig. 1 illustrates these differences by show-
ing typical bond angle distribution functions for Si cations [5], Na cations
[6] and dopant Eu cations [7] in sodium silicate glasses. The present
study explores the potential for rotational invariant parameter Ql to re-
veal the type and degree of order present in coordination geometries of
cations in oxide glasses.

2. Method

In a glass with atom positions Ri = (xi,yi,zi) the information about
the positions of neighbouring atoms j relative to a given atom i can be
expressed using

Ti x; y; zð Þ ¼
X
j≠i

δ x−xij
� �

δ y−yij
� �

δ z−zij
� �

ð1Þ

where xij = (xj − xi). In isotropic materials like glasses it is common to
describe separately the correlations in radial positions of neighbouring
atoms rij using the pair distribution function T(r) which is the orienta-
tional average of Ti(x,y,z) over all atoms i, i.e.

T rð Þ ¼ 1
N

X
i

X
j≠i

∂ r−rij
� �

: ð2Þ

For radial distances r corresponding to cation-oxygen nearest neigh-
bours, i.e. bond lengths, it is common to describe separately the correla-
tions in angular positions of nearest neighbour atoms (θij,ϕij) using the
bond angle distribution function (where θij means the angular position
of atom jwhen atom i is at the origin). Alternatively, the part of the func-
tion Ti(x,y,z) which depends on (θij,ϕij) is

τi θ;ϕð Þ ¼
X
j≠i

δ θ−θij
� �

δ ϕ−ϕij

� �
: ð3Þ

A function f(θ,ϕ) can be represented as an expansion in spherical
harmonics Ylm(θ,ϕ) with coefficients Clm such that

f θ;ϕð Þ ¼
X
l

X
m

ClmYlm θ;ϕð Þ: ð4Þ

From the properties of completeness and orthogonality, the values
of Clm are given by

Clm ¼ ∬ f θ;ϕð ÞY�
lm θ;ϕð Þ sin θdθdϕ ð5Þ

where * denotes the complex conjugate. If the function f(θ,ϕ) is normal-
ised such that the integral of the modulus squared is equal to one then
the coefficients Clm will be normalised such that the sum of the moduli
squared is equal to one. However, the values of Clm depend on the axis
orientation which cannot be important in an isotropic material. The
values of Clm can be used to calculate the second order rotational invari-
ants

Ql ¼
1

2lþ 1

X
m

Clm
2

 !1=2

ð6Þ

which do not dependent on the axis orientation. This is illustrated in
Fig. 2 by using the example function

f θ;ϕð Þ ¼ cos 2θð Þ ¼ cos 2ẑð Þ ð7Þ

which has the spherical harmonic coefficients C00 = 0.489 and C20 =
0.874. In comparison, the example function

f θ;ϕð Þ ¼ sin 2θð Þ cos 2ϕð Þ ¼ cos 2x̂ð Þ ð8Þ

has the spherical harmonic coefficients C00 = 0.489, C20 = -0.438, and
C22 = C2–2 = 0.536. These two functions differ only in the axis orienta-
tion and both functions have the same rotational invariants Q0 = 0.489
and Q2 = 0.391.

Returning to the distribution of N nearest neighbour atoms it is nec-
essary to consider the discrete function f(θ,ϕ) = τi(θ,ϕ) rather than the
continuous functions of the kind used in the above examples. The pres-
ence of delta functions in τi(θ,ϕ) complicates the normalisation, and for
convenience we do not normalise τi(θ,ϕ). Substituting τi(θ,ϕ) into the
expression for Clm gives

Clm ¼
X
j≠i

Y�
lm θij;ϕij

� �
: ð9Þ

This is illustrated in Fig. 3 using the example function consisting of
four points in a “square” in the (x,y) plane which for l ≤ 5 has non-
zero values of C00 = 1.128, C20 = −1.262, C44 = C4–4 = 1.770, and
C40 = 1.269. In comparison the example function consisting of four
points in a “square” in the (x,z) plane has non-zero values of C00 =

Fig. 1. Typical bond angle distribution functions for (left) Si cations [5], (middle) Na cations [6] and (right) dopant Eu cations [7] in sodium silicate glasses.
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