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The slow kinetics of relaxation processes in supercooled liquids is described in terms of the gauge theory of glass
transition. It is shown that the theory allows us to explain the non-Debye relaxation and to derive its exponent, as
well as to predict the appearance of the boson peak in the low frequency part of the spectrum of the dynamic
structural factor. According to the theory, both phenomena have common nature and are caused by the cooper-
ative motion of liquid's atoms, which is described by the correlation function of the gauge field.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Oneof the theoretical approaches to the vitrification description based
on the concept of “frustration” [1–3] presence in supercooled liquids is
considered in this paper. Over the past three decades this idea has been
developed in the gauge theory of glass [2–6]. The combination of this
theory with themethods of description of the quasi-nonergodic system
dynamics [7,8] allows one to obtain a qualitatively correct description of
glass transition, which was named gauge theory of glass transition
(GTGT) in [9,10].

However, in the above papers not enough attention was paid to the
description of the kinetic properties of glass-forming systems. Although
the modern non-equilibrium dynamics technique, giving an advantage
right in the kinetics description, is the basis of this theory. The kinetics
contains the distinctive features and general properties of glass-forming
liquids. Among the properties attracting the researchers' attention one
can notice the non-Debye relaxation, the boson peak as well as the
dynamic heterogeneity which especially intrigues theoreticians. This
work is devoted to the theoretical description of these characteristic
kinetic properties of the supercooled glass-forming liquid in terms of
GTGT.

At the beginning the brief formulation of the gauge model of the
glass-forming system as well as the basic facts on the theoretical de-
scription of its non-equilibrium dynamics close to the glass transition
are presented. Then in the framework of the perturbation theory the

Kohlrausch and Cole–Cole equations that describe a non-Debye relaxa-
tion close to the temperature of glass transition are derived. In conclu-
sion, the analytical expression of the frequency dependence of the
dynamic structural factor is derived. It allows us to describe the boson
peak in the low frequency part of the spectrum, and investigate the
dependence of the position of this peak on temperature.

2. Gauge theory of glass transition

First of all, let us formulate the gauge model of the glass-formed
condensed matter by writing its Hamiltonian.

This problem had been solved long ago, and was discussed in a
number of works [2,3,6]. Below I present only the basic assumptions
and results of above works. Firstly, as an order parameter theQ = Qij

multipole, which has the symmetry of the favorite local molecular
packing, is proposed.With this order parameter the systemsHamiltonian
can be written as follows:

ℋ ¼
X
r!; r!′

L r!; r!′Q r!
� �

Q r!′
� �

þ O Q 3
;Q4

;…
� �

; ð1Þ

where L r!; r!′ is the interaction energy of multipoles. It was shown that
at some temperature Tc in this system the phenomenon similar to the
second order phase transition appears, the correlation length rapidly
grows and reaches the value of several coordination spheres. Besides, in
the low temperature state the translation symmetry is absent. It allows
us to conclude that at this temperature the system turns into glass. The
important property of this Hamiltonian is its local rotation invariance cor-
responding to the order parameter symmetry. For example, it is Y in the
case of a system with the spherical interaction potential [2]. In addition,
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the described system is complicated by the presence of geometrical
frustration appearing because of the impossibility of uniform paving
of Euclidian space by the elementswith Y symmetry. Therefore, the sys-
tem action in continuous representation contains a gauge field, A, and
its sources, J:

S ¼ β ∫ 1
2

D
!Qð Þ2−U Qð Þ þ 1

4
F2 þ JA

� �
dr; ð2Þ

where

U Qð Þ ¼ 1
2
μ2Q2 þ 1

4
vQ 4

;

DiQlk ¼ ∂iQ lk þ gεiabAlaQkb;

Faμν ¼ ∂μAaν−∂νAaμ þ gεabcAbμAcν ;

ð3Þ

and we believe that μ2 = a(T − Tc) [3,5,6].
Let us consider this system behavior in the fluctuation region close to

the critical temperature Tc in the isotropic disordered phase 〈Q〉 = 0. In
this state the liquid's molecules form the ordered structure with
bfQ ≠ 0 in arbitrary local space areas. These fluctuations spontaneously
appear and disappear, randomly oriented and different in sizes. The
mean radius of these fluctuations is rc ~ μ−1. According to the fluctuation
theory of phase transition close to Tc the order parameter can be present-
ed as the sum of “slow”,Φ, and “fast”,Ψ, parts [11],Q = Φ + Ψ.Ψ is the
sum of the harmonics with large wave vectors, andΦ encloses the rest
ones. The “fast” part contains the information on the correlation functions
in L ≪ rc scales, the “slow” part — on the correlation functions in large
scales. The mean square of the “fast” part of the order parameter in the
fluctuating region 〈Ψ2〉 = μ2/v, though 〈Ψ〉 = 0.

According to the fluctuation theory of phase transition one should
carry out the procedure of exception of the “fast” degrees of freedom
by integrating the distribution function over Ψ. Then

S ¼ β ∫ 1
2

D
!Φð Þ2 þ g2μ2

4v
A2 þ 1

2
μ2Φ2 þ 1

4
vΦ4 þþ1

4
F2 þ JA

" #
dr: ð4Þ

Note, that the described system is in the liquid state. In this case the
gauge field is a dynamic one, and the geometric frustration leads to the
appearance of the sources of this field,which are generallymovable. It is
supposed that in the disordered state, when T N Tc, the system of the
sources is in thermal equilibrium [4]. Then one can perform averaging
of the partition function, Z, over Jaμ:

Z ¼ ∫ ∫ exp −S−β
2
∫I−1

0 J2dr
� �

DJ
� �

DΦDA; ð5Þ

where ∫…Dx means the path integration. This leads to the appearance
of the additional contribution to the “mass” of the gauge field Aμ

a, which,
in result, takes the form of

M2 ¼ μ2g2=2v−I0: ð6Þ

As a result the action of the frustrated system has the following form:

S ¼ β
2
∫ D

!Φð Þ2 þM2A2 þ μ2Φ2 þ v
2
Φ4 þ 1

2
F2

� �
dr: ð7Þ

The derived renormalization of the gauge field mass affects the
system behavior. It shifts the M2 = 0 singularity in the range of the
temperatures above the temperature of the virtual phase transition Tc,
since according to Eq. (6) the correlation length of the gauge field
diverges in T0 = Tc + 2I0v/ag2. In [9] it has been shown that this leads
to the critical slowing-down of all the system in T0, wherein the temper-
ature dependence of the relaxation time satisfied the Vogel–Folcher–
Tamman law.

3. Analysis of the theory in dynamic case

It is natural that the static theory cannot describe glass transition in
full because the dynamic properties of the system are not taken into
account in it. In order to overcome this deficiency one can investigate
the non-equilibrium dynamics close to T0 by using the functional
methods [9,10]. In this case the analog of the partition function is the
stochastic generating functional:

Z ¼ ∫ exp −S�� 	
DΦ
!
DA
!
; ð8Þ

where

S� ¼ 1
2
∫
�
Φ
!

t; rð ÞĜ−1
t−t′; r−r′
� �

Φ
!

t′; r′
� �

þA
!

t; rð ÞΔ̂−1
μν t−t′; r−r′
� �

A
!

t′; r′
� �

�drdr′dtdt′

þ∫
�
gεabc

�
∂μAaνÞAbμAcν þ gεabc ∂μAaν

� �
AbμAcν þ

þgεabc ∂μAaν

� �
AbμAcν þ g2εabcεaijAbμAcνAiμAjν

þg2AAΦ2 þ g2A2ΦΦþ vΦΦ3�drdt;

ð9Þ

andΦ
!¼ Φ;Φ


 �
, A
!¼ A;A

n o
are vectors whose components are called

“quantum” and “classical”, respectively [12]. G−1Δμν
−1 are the matrixes,

which are inverse to the appropriate matrixes of the initial correlation
functions (the Green functions of the non-perturbated theory), according
to [13] they have the following form:

Ĝ ¼ GK
0 GA

0

GR
0 0

 !
; Δ̂μν ¼ ΔK

μν ΔA
μν

ΔR
μν 0

 !
; ð10Þ

GA
0 k; tð Þ ¼ θ tð Þ e

−tεk μð Þ=ΓΦ

ΓΦ
; GK

0 k; tð Þ ¼ e−jtjεk μð Þ=ΓΦ

εk μð Þ : ð11Þ

ΓΦ is the kinetic coefficient of the order parameter field, and
εk(x) = k2 + x2. In case if M → 0

ΔA
μν k; tð Þ ¼ δμνθ tð Þ e

−tεk Mð Þ=ΓA

ΓA
; ΔK

μν k; tð Þ ¼ δμν
e−jtjεk Mð Þ=ΓA

εk Mð Þ ; ð12Þ

where ΓA is the kinetic coefficient of the gauge field.
The critical dynamics of the considered system close to T0 was investi-

gated in [9,10]. It has been shown that the critical slowing-downof the re-
laxation processes occurs in the system at T → T0

+. As a result the system
freezes in a disordered and nonergodic solid state. The reason of this is
that the gauge interaction radius between the order parameter fluctua-
tions grows much faster than the size of these fluctuations. This radius
can be considered as the length of dynamic heterogeneity.

Prima facie it seems surprising that the frustration, which destroys
the long-range order, leads to the growth of the correlation length of
the gauge field at the freezing temperature. However, the physical
meaning of this seems to be easy to understand: In the non-frustrated
system the correlation radiuses of the gaugefield and theorder parameter
field coincide (one can also interpret the correlation radius of the gauge
field as the radius of elastic interaction). But in the frustrated system the
parameter Tc is renormalized and shifts towards lower temperatures
when the system approaches the glass transition point. Therefore, we
have the grounds to believe that the size of the dynamic fluctuations,
which corresponds to the correlation radius of the gauge field, diverges
just as in a non-frustrated system, but the correlation radius of the
order parameter lags, since the frustration prevents its growth.

In [9,10] it has also been shown that the temperature dependence
of the relaxation time close to the T0 is not a power function which is
specific for second order phase transition, but it is described by the
Vogel–Foulcher–Tamman dependence. However, the kinetics of the
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