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The expression for the entropy of binary square-well (SW) mixture is derived in the framework of the semi-
analytical approach [J. Non-Cryst. Solids 353 (2007) 1798] for the mean spherical approximation. This expression
is applied to calculate the concentration dependencies of the excess entropy of mixing for liquid Na-K and Na-Cs
alloys at T = 373 K. It is shown that the SW model allows to achieve a better agreement with experiment than the
hard-sphere model with the same values of hard-core parameters.
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1. Introduction

Different types of fluids can be described by means of the square-
well (SW) model: non-polar molecular fluids [1-3], colloids [4-7],
aqueous electrolyte solutions [8,9], polymers [10-12] and polar and
associating compounds, including water [13,14] and metal liquids
[15-21] (for last, the SW model was used recently as a reference system
also [22-24]).

For liquid metals, the SW model is able to describe the structure
factor with low-lying shoulder on the high-angle side of the first peak
[15]. In liquid metal binary alloys, this model can describe different
deviations from the ideal mixing such as tendencies to chemical short-
range ordering [18] or to phase separation [19].

In majority of works where the SW model is applied to metal state,
the random phase approximation (RPA) [25-27] is used. Only recently,
going beyond the framework of the RPA was implemented in this field
[20,21] by using the mean spherical approximation (MSA) [28] for
which the semi-analytical (SA) procedure suggested by Dubinin et al.
[29] was conducted. Notice that the MSA-SA procedure reproduces
explicitly the numerical MSA results obtained by solving the Ornstein-
Zernike integral equation [30] both for a pure [31] and for binary [32]
SW fluid at an appropriate number of coefficients in the expansion
suggested by Dubinin et al. [29]. In the study of Dubinin et al. [21], the
SW-MSA-SA was used to study the partial structure factors of liquid
equiatomic Na-K alloy.

Here, we derive the MSA-SA expression for the entropy of binary SW
mixture (earlier, expressions for the entropy of pure SW fluid were
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derived within the RPA [22] and within the MSA-SA [24]) and estimate
its usefulness for liquid metal alloys on the example of Na-K and Na-Cs
systems.

These systems are interesting for consideration since their entropies
of mixing very little deviate from the entropy of the ideal solution, S;4. In
that case, the excess entropy of mixing, AS%, is very small and sensitive
to the method of calculation. Consequently, this quantity namely is
chosen here for investigation.

2. Theory

For a binary alloy, AS®™ is expressed as follows:
X bin 2 ure
AST =S =N " GST =Sy, 1)
i=1

where SPI" is the entropy of binary alloy, SP""¢ is the entropy of the ith-
kind pure substance at the same absolute temperature, T (further, we
neglect indexes “pure” and “i,” denoting the thermodynamic quantities
of pure substances) and c; is the concentration of the ith component in
the alloy. The entropy of the ideal solution is calculated as follows:

Sia = —kg(cy Incy + ¢, Incy). (2)

Consider a one-component SW fluid that is described by the following
three-parameter model pair potential:
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where o is the diameter of the hard core (HC);

0, r<o
dsw(r) =4 & O=r<\o; 4)
0, r=\o

gand o(\ — 1) are the depth and width of the square well, respectively.
The entropy of such a fluid can be expressed as follows:

Ssw = Ss + ASsw = Sig + ASys + ASsw, 5)

where Sys is the entropy within the hard-sphere (HS) model, ASsyy is
the contribution due to the difference between SW and HS entropies
and S is the entropy of the ideal gas (hereafter, all thermodynamic
quantities will be written in atomic units (a.u.) per atom), calculated

as follows:
1 3
In (5 )} ©)

Here, kg is the Boltzmann constant, p is the mean number density
and m is the atomic mass.

ASsyw in the framework of the MSA-SA was obtained by Dubinin et al.
[24]:

kgTm
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where y(q) is the structure factor, calculated as follows:

Low s = T Bt ®
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Here,
dsw () = 4Me[ Sin(M) — sin(x)—\x COS(X) + X cos()]/’; (10

B = (ksT)~ ', x = qo, [a] is the integral part of a, by, is the coefficient de-
termined numerically from the condition that the pair correlation func-
tion, g(r), must be equal to zero inside the HC.

To obtain Eq. (7), we used the following thermodynamic relation:

3,8,

where E is the internal energy.
For the SW fluid, Eq. (11) leads to the following expression [24]:

(5, -3 ),

where Usyy is the SW potential energy:

Usw = 21p / O (gsw (r2dr = 2mp / ow (Ngaw (NF2dr. (13)
0 o

For subsequent operations, Usyy within the MSA-SA form in the wave
space will be used:

Usw-msa-sa = 37O f(}\ 1)
1
tap / [swmsasa(@)—1bsw (9)q"dg. (14)
0
For the binary SW mixture, Egs. (3) and (4) are being transformed to
the following expressions, respectively:
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where 0y, g5 and A;; are the partial SW parameters (i,j = 1, 2);
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The SW entropy of two-component fluid is written as follows:
Ssw = Sic. + Sia + ASPs + ASqw, (17)

where
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To obtain ASZY, we use the way similar to that for the one-
component case, i.e., rewrite Eq. (12) as follows:
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Here, y;(q) is the partial structure factor in the form of Ashcroft and
Langreth [33]:
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where ¢;(r) is the partial direct correlation function. Within the SW-
MSA-SA, this characteristic is written as follows:

Ciisw-msa-sa(q) = —Baysw(q) + Ac(q), (23)
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