FISEVIER

Contents lists available at ScienceDirect

Journal of Non-Crystalline Solids

journal homepage: www.elsevier.com/locate/jnoncrysol

Luminescence properties of Eu²⁺ and Ce³⁺ in Na₅Ca₂Al(PO₄)₄ produced by the combustion-assisted synthesis method

Zhang Fen, Tang Wanjun*

Hubei Key Laboratory for Catalysis & Material Science, College of Chemistry & Material Science, South-Central University for Nationalities, Wuhan 430074, China

ARTICLE INFO

Article history:
Received 11 November 2013
Received in revised form 8 February 2014
Available online 28 February 2014

Keywords: Optical material; Photoluminescence; Energy transfer; Na₅Ca₂Al(PO₄)₄

ABSTRACT

New greenish-blue luminescence Eu^{2+}/Ce^{3+} codoped $Na_5Ca_2Al(PO_4)_4$ phosphors were prepared by a combustion-assisted synthesis method. X-ray powder diffraction analysis confirmed the formation of $Na_5Ca_2Al(PO_4)_4$ host lattice.. The Eu^{2+} -doped $Na_5Ca_2Al(PO_4)_4$ sample has an efficient greenish-blue emission band that peaks at 476 nm, while Ce^{3+} -doped $Na_5Ca_2Al(PO_4)_4$ sample exhibits a strong emission band at 391 nm. Efficient energy transfer from Ce^{3+} to Eu^{2+} occurs due to the large spectral overlap between the emission of Ce^{3+} and excitation of Eu^{2+} . Co-doping Ce^{3+} enhances the emission intensity of Eu^{2+} greatly by transferring its excitation energy to Eu^{2+} , and Eu^{2+} plays a role as a sensitizer. Eu^{2+} co-doped Eu^{2+} co-doped Eu^{2+} condition of Eu^{2+} in the fields of lighting and display.

© 2014 Elsevier B.V. All rights reserved

1. Introduction

In recent years, white light-emitting diodes (LEDs) have gained much attention as devices for display and solid state lighting [1]. White LEDs are expected to be a promising candidate to replace conventional incandescent and fluorescent lamps due to their merits of being environmentally friendly, highly efficient and having a longer lifetime. Nowadays, intensive studies have been carried out with the aim of improving the luminous efficiency and color-rendering properties of white LEDs, and especially phosphors. Eu-activated phosphors, for example, aluminates, silicates, phosphates and derivatives, have been intensively studied for their luminescent properties. As an activated ion, Eu²⁺ ion has the 5d electron unshielded from the crystal field by the 5 s and 5p electrons, and its spectral properties are strongly affected by the surrounding environment such as symmetry, covalence, coordination, bond length, site size and crystal-field strength, etc. [2]. The absorption and emission spectra of Eu²⁺ usually show a broad band due to transitions between the 4f⁷ ground state and the crystal field components of the 4f⁶5d¹ excited state configuration. Thus the Eu²⁺-emission band may be changed from blue to red in the visible spectral region. The wavelengths of excitation and emission bands strongly depend on the host crystal. So the choice of host greatly affects the optical properties of Eu²⁺ ions. Phosphate compounds are the excellent matrices to be developed for Eu²⁺-activated phosphors. Phosphate phosphors doped with Eu²⁺ ions have excellent thermal stability and the tetrahedral rigid three-dimensional matrix of the phosphates is thought to be ideal for charge stabilization [3–5]. In addition, the low sintering temperature required for their synthesis is another reason that these phosphates are considered to be excellent hosts for preparing phosphors [6].

There are two possible ways to improve the luminescence properties of Eu^{2+} doped phosphate phosphors: to modify the crystal field of Eu^{2+} and to introduce a sensitizer that has strong absorption in the spectral range and transfers its energy to Eu^{2+} . The latter is more effective in improving photoluminescence properties of phosphors. Energy transfer by exchange interactions is often employed to sensitize an activator ion in order to achieve brighter emission. The activator Ce^{3+} ions have efficient absorption in the UV region, which can sensitize other activators such as Eu^{2+} , and so this has been utilized to enhance the emission of Eu^{2+} via energy transfer in many compounds [7–9].

Phosphates usually show a rather short wavelength of optical absorption edge, which makes them suitable as hosts to accommodate active rare earth ions [10]. Aluminum dicalcium pentasodium tetrakis(phosphate), Na₅Ca₂Al(PO₄)₄, crystallizes in the monoclinic space group Cc(9), as confirmed by Alkemper et al. in 1994 [11]. It has lattice parameters of a=11.071(3) Å, b=13.951(4) Å, c=10.511(3) Å, $\beta=119.34(1)^{\circ}$ and V=1415.2 Å³. However, the luminescent properties of Na₅Ca₂Al(PO₄)₄:Eu²⁺ have never been clearly reported. In the present work, efficient spectral conversion is obtained from Eu²⁺-doped Na₅Ca₂Al(PO₄)₄ phosphors. A systematic study of the energy transfer form Ce³⁺ to Eu²⁺ in Na₅Ca₂Al(PO₄)₄ host has been carried out. The effects of dopant content and the codoping of Ce³⁺ ions on the luminescence efficiency of Na₅Ca₂Al(PO₄)₄:Eu²⁺ phosphors have been investigated systematically and are presented here.

^{*} Corresponding author. E-mail address: tangmailbox@126.com (T. Wanjun).

2. Experimental

Eu²+ and/or Ce³+ activated Na₅Ca₂ – $_x$ – $_y$ Al(PO₄)₄: $_x$ Eu²+ $_y$ Ce³+ (NCAP: $_x$ Eu²+ $_y$ Ce³+) samples were prepared as follows [12]: First, stoichiometric amounts of source materials NaNO₃ (A.R.), Ca(NO₃)₂·4H₂O (A.R.), Al(NO₃)₃·9H₂O (A.R.), and NH₄H₂PO₄ (A.R.) were thoroughly mixed, and an appropriate amount of CO(NH₂)₂ (A.R.) was added as fuel. Second, Eu₂O₃ (99.99%) was dissolved in HNO₃ to convert into Eu(NO₃)₃ completely. These reagents were dissolved in deionized water and introduced into a muffle furnace maintained at 500 °C for 5 min. Then the samples were reheated at 600 °C for 3 h in a H₂ atmosphere and were allowed to cool in the reducing atmosphere to room temperature. The obtained transparent glassy samples were finally ground into powder for measuring phase compositions and the photoluminescence properties.

The phase purity of the as-prepared samples was checked by powder X-ray diffraction (XRD) analysis with a Bruker D8 advanced automatic diffractometer with Cu K α radiation operating at 40 kV and 40 mA. The measurements of emission (PL) and excitation (PLE) spectra were performed by using a Jasco FP-6500 Spectrofluorometer (Jasco Corporation, Japan), and a xenon lamp was used as the excitation source. For comparison, all measurements were performed at room temperature with the identical instrumental parameters.

3. Results and discussion

Fig. 1(a) illustrates the XRD patterns of the un-doped samples crystallized at various temperatures. Most of the diffraction peaks of the sample sintered at 550 °C can be basically indexed to the corresponding standard data for the monoclinic phase of Na₅Ca₂Al(PO₄)₄ (JCPDS Card No. 84-2464). The XRD pattern in Fig. 1(a) shows that Na₅Ca₂Al(PO₄)₄ is well crystallized in the sample sintered at 550 °C. However, a trace of β-NaCaPO₄ as a second phase (marked by arrows) can also be discerned. We can see that an increase of the sintering temperature results in a decrease of the Na₅Ca₂Al(PO₄)₄ diffraction peak intensity and Na₅Ca₂Al(PO₄)₄ seems to dissolve [13]. Meanwhile, the intensities of the peaks around 32.6°, 33.1°, and 33.7° for the phase of β-NaCaPO₄ become steadily higher as the sintering temperature increases. Fig. 1(b) demonstrates the typical powder XRD patterns of NCAP:0.04Eu²⁺. NCAP:0.28Ce³⁺, and NCAP:0.04Eu²⁺,0.28Ce³⁺ samples. All diffraction peaks were found in good agreement with that reported in the JCPDS Card No. 84-2464, regardless of the contents of the dopants, thereby indicating that the obtained samples are single-phase and the codoped ${\rm Eu^{2+}}$ and ${\rm Ce^{3+}}$ ions do not cause any significant change in the host structure. On the basis of the effective ionic radii of cations with different coordination numbers [14], we suggested that the ${\rm Eu^{2+}}$ and ${\rm Ce^{3+}}$ ions prefer to substitute the ${\rm Ca^{2+}}$ ions because the ionic radii of ${\rm Eu^{2+}}$ (1.17 Å) and ${\rm Ce^{3+}}$ (1.14 Å) are approximate to that of ${\rm Ca^{2+}}$ (1.12 Å). The small shift of the diffraction angle to the lower 2θ angle should be ascribed to the ${\rm Ca^{2+}}$ ions substituting for the ${\rm Eu^{2+}/Ce^{3+}}$ ions.

The excitation (PLE) and emission (PL) spectra of NCAP:0.04Eu²⁺ are shown in Fig. 2. The PLE spectrum, monitored at 476 nm, shows a broad band due to $4f^7 \rightarrow 4f^65d^1$ transition of Eu²⁺. Eu²⁺ ions incorporated in the Na₅Ca₂Al(PO₄)₄ host lattice exhibit strong absorption at about 250-450 nm, which is close to the emission wavelength (380-400 nm) of InGaN-based near UV LED. The main excitation peak is located at 354 nm, which indicates that the phosphor is very suitable for a color converter using near UV light as the primary light source. Upon the excitation of 354 nm, the PL spectrum of NCAP:0.04Eu²⁺ exhibits a broad band emission centered at 476 nm attributed to the typical $4f^65d^1 \rightarrow 4f^7$ transition of Eu²⁺. It can be used as a greenish blueemitting phosphor excited by near UV LED chips and mixed with other color emission phosphors to obtain white light, Moreover, the dependence of the PL intensities of NCAP: xEu^{2+} on the content of $Eu^{2+}(x)$ is shown in the inset of Fig. 2. The PL intensity increases with the increasing Eu²⁺ content until it reaches a maximum at x = 0.04, then it decreases as the content of Eu²⁺ further increases because of the concentration quenching which is caused by the energy transfer between the identical Eu²⁺ ions.

As shown in Fig. 3, the PLE spectrum of Ce^{3+} in NCAP shows a broad band from 250 nm to 350 nm, which is assigned to the allowed $4f^1 \rightarrow 5d^1$ transition of the Ce^{3+} ions. The dominant bands in the PLE spectrum are difficult to resolve due to the Ce^{3+} $5d^1$ multiplet excited states and the serious overlap between $5d^1$ levels. When excited under 319 nm, the emission of NCAP: Ce^{3+} shows one asymmetric band extending from 350 to 450 nm with a maximum at about 391 nm. The asymmetry of the emission band of NCAP: Ce^{3+} results from a splitting into two levels of the ground state due to spin orbit coupling, and it can be deconvoluted into two Gaussians centered at 388 and 409 nm that originated from the lowest 5d level to $^2F_{5/2}$ and $^2F_{7/2}$, respectively [15].

Based on the above PLE spectra of the Ce^{3+} and Eu^{2+} single-doped samples, it can be observed that Eu^{2+} activated $Na_5Ca_2Al(PO_4)_4$ samples have a broader absorption range in the UV region than that of Ce^{3+} activated samples and so Eu^{2+} activated $Na_5Ca_2Al(PO_4)_4$ sample can better satisfy the requirements of white-LEDs. However, Eu^{2+} activated $Na_5Ca_2Al(PO_4)_4$ sample has a lower luminescence intensity and a

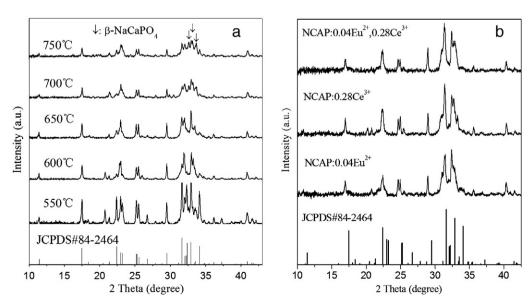


Fig. 1. XRD patterns of the un-doped samples sintered at various temperatures (a); XRD patterns of NCAP:0.04Eu²⁺, NCAP: 0.28Ce³⁺, and NCAP:0.04Eu²⁺, 0.28Ce³⁺ sintered at 600 °C (b).

Download English Version:

https://daneshyari.com/en/article/1481063

Download Persian Version:

https://daneshyari.com/article/1481063

<u>Daneshyari.com</u>