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In the presence of water vapor, oxide glasses exhibit faster surface stress relaxation than bulk stress relaxa-
tion at a temperature below the glass transition temperature. When surface stress relaxation takes place in a
glass under an applied stress, surface residual stress can develop upon the release of the applied stress. This
phenomenon can be explored by studying the permanent bending of a fiber that is observed when a fiber is
heat-treated in air under a bending load, and subsequently released from the bending load. Simple and accu-
rate methods to evaluate the residual curvature in a bent fiber from two-point bending treatments were de-
veloped and applied to the bending of SiO2 glass optical fibers.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

It was found that surface stress relaxation of silica glasses can take
place at much lower temperatures than the glass transition tempera-
ture in a moist atmosphere [1–4], while bulk stress relaxation of the
glasses, in general, requires a heat-treatment at the glass transition
temperature or higher temperature. The surface stress relaxation
can be demonstrated by subjecting a glass fiber to a bending stress
at a temperature below the glass transition temperature and observ-
ing a permanent bending of the fiber upon release of the stress at
room temperature.

A permanent bending of glass fibers with various compositions at
temperatures much lower than their glass transition temperature was
also reported earlier, including various fluoride, oxide, and chalco-
genide glasses [5–10]. In these earlier works, most investigators
subjected glass fibers to a bending stress by winding the fibers around
a cylindrical object and attributed the phenomenon to viscous flow of
the entire fibers, instead of the surface stress relaxation. In our work it
was found that the bending of glass fibers can take place extensively
in moist atmosphere but hardly in dry atmosphere. Furthermore, the
source of the bending of the fiber was found confined to the surface
layer of the fiber; the permanently bent fiber gradually straightened
with successive etching of the fiber surface with an HF solution at
room temperature. For these reasons the observed fiber bending
was attributed to stress relaxation confined to the surface layer of
the fiber [3]. The kinetics of surface stress relaxation of various glasses
including silica, soda-lime, and various alkali aluminosilicate were
evaluated by measuring the radius of curvature of the two-point
bent fibers as a function of bending treatment time and temperature

in various water vapor pressures and comparing the results with the
developed theory [4].

It was found that the process was diffusion-controlled, with the
reciprocal radius of curvature of the bent fiber increasing with the
square root of the treatment time, most likely involving water diffu-
sion into the glass fiber surface. The evaluation of the radius of curva-
ture of the fiber was the most important step in this analysis [4].
Furthermore, in view of the importance of water vapor, two point
bending [11] where the entire stressed region of fiber can be exposed
a constant water vapor, is superior to the fiber wound around a cylin-
drical object where one side of the fiber is directly contacting the cyl-
inder, obstructing the glass–water vapor interaction. On the other
hand, the evaluation of the radius of curvature of two-point bent fi-
bers is more difficult compared with a circularly bent fiber since the
radius of curvature of the former is dependent on the position of
the fiber. In the present paper, simple and accurate methods to eval-
uate the radius of curvature of two-point bent glass fibers will be
presented.

When surface stress relaxation takes place while a glass fiber is
under an applied load, the glass acquires a residual stress upon the re-
lease of the applied load. The residual stress developed in a glass sur-
face can affect the mechanical strength of the glass. In fact, the
residual stress development by the surface stress relaxation can be
used as a means to strengthen glasses above their intrinsic strength,
as will be reported in our separate paper [12]. Furthermore, it appears
[4] that the surface stress relaxation and the resulting residual stress
are involved in the fatigue limit of glasses [13–17], the lowest tensile
stress which can cause the static fatigue or slow crack growth, as well
as the coaxing effect of glass, strengthening by an application of
sub-critical tensile stress [18,19]. Theoretically, it is easier to approx-
imate the bending of a two-point bent fiber by a circularly bent fiber
with a single radius. It was found that this approximation was accept-
able in most cases [4]. In the present paper, however, an exact
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method of evaluating the radius of curvature of the two-point bent
fiber after releasing the bending load was developed, and the method
was applied to the bending of silica glass optical fiber.

When a glass fiber with a Young's modulus, E, and radius, r0, is
bent inside a tube with inner diameter, di, the maximum bending
stress, σmax, is given [11] by

σmax ¼ 2:396Er0
di−2r0:

ð1Þ

When a fiber with the radius, r0, is subjected to a maximum bend-
ing stress, σmax, which is produced by a radius of curvature, R0= Er0

σmax
;

for a period of time, t, the surface layer with thickness z≪r0 of the
fiber can undergo complete surface stress relaxation. Then, upon the
release of the bending load, when the fiber springs back to the radius
of curvature R, the ratio of the two radii of curvature was found under
the condition that z≪r0 [4] by

R0

R
¼ 4z

r0
: ð2Þ

As this equation results from the considerations of the zero mo-
ment upon the release of bending loads, a condition that must be
met at every position along the fiber length, all positions experiencing
the same depth of surface stress relaxation z will also possess the
same value of the ratio R0/R. The depth of stress relaxation, z, was
found to increase linearly with the square root of time, indicating a
diffusion controlled process [4].

Previously, single overall values of the radii of curvature, R0 and R,
before and after the release of bending loads, were determined by ap-
proximating the fibers to have circular shapes [4] and the correspond-
ing diffusion depths, z, and diffusion coefficients, D, were determined,
where z=

ffiffiffiffiffiffi
Dt

p
. In the present paper, an exact method which con-

siders a radius of curvature, R0, that varies with position, is used to
evaluate the position-dependent radius of curvature, R, upon release
from the bending load, for silica glass fibers in a two-point bending
configuration. The obtained curvature results are compared with the
earlier result based upon the circular approximation.

2. Theory

Four different methods of evaluating the radius of curvatures of
the two-point bent fibers will be described here. They are 1) from
the angle of the fiber ends, where the bending stress is zero, with re-
spect to the original straight fiber, 2) from the position of the fiber
where the bending stress just becomes zero, 3) from the coordinates
of the bent fibers and 4) approximation of the two-point bent fiber
with a circularly bent fiber.

Fig. 1 shows a schematic diagram of a two-point bent fiber under a
bending stress and after release. The letter s represents a variable
length along the fiber axial direction from the origin corresponding
to the vertex of the fiber, and L is the total fiber length from the
point of the maximum bending stress to the point where the bending
stress just becomes zero. The letters, a, b and a′, b′ represent the
values of the x, y coordinates of the fiber position, at s=L, before
and after the release of the bending stress. The letters θ0(s) and θ(s)
represent the angles of the radius of curvature vector, (directed out-
wards the center of the curvature) at point s along the fiber, with re-
spect to the vertical line (y-axis) during the application of a bending
load and after the release of the bending load, respectively. Using
this diagram, accurate methods of evaluating the ratio of the radii of
curvature of the fiber before and after the release from the bending
load, R0/R, and in turn the depth, z, of surface stress relaxation by
water diffusion, will be described.

2.1. R0/R from the fiber angle at end point s=L

Expressing all angles in radians, the fiber length element, ds, is
given by ds=R0dθ0=Rdθ where the ratio, R0/R, is independent of
the fiber position, s, whether indicated by θ, or θ0, even though the
values of R and R0 are dependent on the fiber position.

And in general, ∫θ sð Þ
θ s¼0ð Þdθ ¼ R0

R ∫θ0 sð Þ
θ0 s¼0ð Þdθ0 where both θ(s=0) and

θ0(s=0) are π/2, such that

θ sð Þ ¼ π
2
þ R0

R
θ0 sð Þ−π

2

� �
: ð3′Þ

Since at s=L, θ0(s=L)=π

R0

R
¼ θ s¼Lð Þ

π=2
−1 ¼ Φ s¼Lð Þ

π=2
: ð3Þ

Upon relaxation and unloading, from the measurement of Φ(s=L),
which is the angle at s=L of the fiber from the vertical line (y-axis),
one can determine the ratio of R0/R. In this way, R0/R can be most
simply and directly determined as Φ/(π/2). Since the two-point
bent fiber is straight for all points beyond s=L, the angle can be mea-
sured at any point beyond s=L.

2.2. R0/R from the fiber coordinates at L

The ratio of radii of curvature of a two-point bent fiber before and
after the load is released can be evaluated by measuring the coordi-
nates, a′ and b′ at the point s=L upon the removal of the bending
load. They can be evaluated as

a′ ¼ −∫L
0 cos θds and b′ ¼ ∫L

0 sin θds:

According to Matthewson et al. [5],

ds ¼ 0:381L
dθ0ffiffiffiffiffiffiffiffiffiffiffiffiffi
sin θ0

p

Replacing θ in the above integrals using Eq. (3′) and using
two-angle trigonometric identities

a0

L
¼ 0:381∫π

π=2

sin R0
R θ0− π

2

� �� �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
sin θ0

p dθ0 and

b0

L
¼ 0:381∫π

π=2

cos R0
R θ0− π

2

� �� �
ffiffiffiffiffiffiffiffiffiffiffiffi
sinθ0

p dθ0:

These integrals were evaluated numerically as a function of R0/R
and the results are shown in Fig. 2, with simple curve fit relations
over the values of 0bR0/Rb0.5 where the assumption of z≪r0 is
met. When the coordinates, a′ or b′ corresponding to L can be mea-
sured, the corresponding value of R0/R and in turn z can be deter-
mined. It is particularly striking that the values of R0/R within this
range are essentially directly equal to a′/L.

2.3. R0/R from measuring x′ and y′ down the fiber

Coordinates, x′ and y′, at various distances s along the length of
the fiber released from the bending load can be evaluated as follows:

x0 ¼ −∫s
0 cos θds and y0 ¼ ∫s

0 sin θds

with θ from Eq. (3′) and two-angle trigonometric identity and differ-
ential ds as used previously.
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