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The article compares different approaches describing shear viscosity of glassforming melts. It is demonstrated
that they all could be derived from the original assumption of the Avramov and Milchev (AM) model that, due
to the disorder, activation energy barriers of different heights appear. This leads to dependence of shear viscosity
on the varianceσ of the probability distribution function that the barrier of height E is present. All models are the
result of the premise that (with different degrees of reliability) σ depends on temperature and/or on entropy.
An approach is developed capable to describe, although with limited accuracy, the composition dependence
of glass transition temperature.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Shear viscosity provides an important link between thermodynam-
ics and the kinetic properties of matter. Accurate knowledge of the de-
pendence of shear viscosity, η(T,x) on temperature, T, and composition,
x, is of crucial importance to understand the fundamentals of materials
science and the technology behind glasses. Although there are numer-
ous definitions of the glass transition, here I follow the convention
that Tg is the temperature at which the equilibrium value of shear vis-
cosity is 1013 [poise] (resp. 1012 [Pa.s]).With this definition the temper-
ature dependence of shear viscosity of all glassforming substances can
be expressed in terms of one dimensionless parameter Tg

T that varies in
quite the narrow range of 1:05 >

Tg
T > 0:55.

Shear viscosity is not a pure thermodynamic variable because it
has time in its dimensions. So, it cannot be determined by pure ther-
modynamic methods and needs a model description. The aim of the
present paper is to compare the origin of derivation of the most wide-
spread viscosity models and to demonstrate the similarities in their
final forms. The second task of this article is to adapt the Avramov
and Milchev (AM) model [1–4] to prognosticate the dependence of
η on composition, x. The first attempt was already performed in [5]
where the composition dependence of the glass transition tempera-
ture was expressed in a rather empirical way. We introduced in [5]
the lubricant parameter Li=xiki, accounting for the special contribu-
tion of each element by the coefficient ki whose values vary between
0 and 1. The reason is that one simple parameter like x is not suffi-
cient to describe properly the dependence of the glass transition tem-
perature on composition. Essentially, lubricant parameter is a sort of
affinity accounting for the specific contribution of each element to

shear viscosity. In the case of Al2O3 and Fe2O3 the definitions of
kAl2O3 and of kFe2O3 are more complex and the corresponding expres-
sion can be found in [5].

2. Equations of shear viscosity

Glasses consist of a continuous network of relatively “rigid” oxygen
bridges connecting the network forming (NF) components (for instance
Si, B, P etc.). The NF components occupy the nodes of the network. Vis-
cous flow is a course the NF are changing their positions. These events,
extremely rare at high viscosities, are controlled by the heights of
activation energy barriers, related to the “rigid” bridges. The Avramov–
Milchev (AM) model assumes [1–4] that disorder in the amorphous
state results in the appearance of barriers of different heights. Therefore
the average frequency to jump to a new position depends on product of
the probability p(E) that barrier of height Ewill appear and the frequen-
cy ν(E) of jumping over it, i.e. νh i ¼ ∑ν Eð Þp Eð Þ. The probability p(E)
can be described by Ec, the maximum value of the distribution function
andby its varianceσ. This is illustrated in Fig. 1where the thick solid line
represents the probability p(E) of the appearance of activation energy
barrier of height E; the dashed line represents the exponential decay
of the jump frequency ν(E). The product ν(E)p(E) is presented by the
dotted line. Note that the maximum depends on the low energy tail of
the p(E) curve, not on the shape near the maximum of this curve.

In [1–4] it was shown that, if p(E) is a sequence of independent
events the average jump frequency is approximately equal to

νh i ¼ ν∞ exp −Ec
σ

� �
ð1Þ

under the condition thatRTbσbEc. Hereν∞ ¼ νo
RT
σ depends on vibration

frequency, νo, of the NF units. Since viscosity is related to the reciprocal
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of the average jump frequency the shear viscosity is expressed in the
form

logη ¼ logη∞ þ Ec
2:3σ

: ð2Þ

In the following it is assumed that the parameter logη∞ is a constant
because it depends on temperature in a much less important way as
compared to the Ec

2:3σ term.
Eq. (2) could serve as the origin for derivation of most of the known

viscosity equations. Indeed, it is sufficient to assume that σ is propor-
tional to temperature increase above the Kauzmann temperature,
σ~(T−To), and VFT

logη ¼ logη∞ þ B
T−To

; B ¼ Ec
2:3σg

Tg−To
� �

ð3Þ

equation follows straightforward.
If one assumes that σ is proportional to the product of configuration

entropy ΔS and temperature, i.e. σ~TΔS, then the expression of Adam–

Gibbs

logη ¼ logη∞ þ C
TΔS

ð4Þ

is obtained.
The AMmodel is based on Eq. (2), with an accurate solution of the

dependence of the variance σ on entropy S according to expression of
statistical thermodynamics.

σ ¼ σg exp
2 S−Sg
h i
ZR

24 35 ð5Þ

Here R is the ideal gas constant and σg is the variance at a reference
state with entropy Sg. From the view point of mathematics the param-
eter Z/2 is the degeneracy of the system. Actually, Z is the coordination
number because Z/2 accounts for the number of escape channels and
each escape channel can be used in two directions. It is seen that, unlike
most of the recent approaches (see [6–9] and literature cited there), σ
depends on the total entropy. Combining Eqs. (2) and (5) the shear vis-
cosity is obtained

logη ¼ logη∞ þ 13− logη∞ð Þ exp −
2 S−Sg
h i
ZR

24 35: ð6Þ

If heat capacity is assumed constant then S−Sg≈Cp ln T
Tg

and the
AM equation follows

logη ¼ logη∞ þ 13− logη∞ð Þ Tg
T

� �α

: ð7Þ

Here α ¼ 2Cp
ZR is the dimensionless “fragility”. It was already shown

[5,10] that α is related to the Angell fragility, m, according to
α ¼ m

log
ηg
η∞

� �≈ m
13.

I failed to find a reasonable assumption for σ that will lead to the
Mauro–Yue–Ellison–Gupta–Allan (MYEGA) [6–9] equation. However,
if one assumes for the heat capacity a more sophisticated temperature
function, for instance, from Eq. (6) an expression appears

logη ¼ logη∞ þ log
ηg

η∞

� �
exp − 4c

ZRTg

" #
Tg
T

� �α

exp
4c
ZRT

� �
ð8Þ

that is quite similar in form to the MYEGA equation.

logη ¼ logηo þ log
ηg

ηo

� �
exp − α−1ð Þ½ �

� �
Tg
T

� �
exp α−1ð Þ Tg

T

� �
ð9Þ

3. Composition dependence of glass transition temperature Tg

As discovered by the Phoenicians, Tg can be dramatically changed by
adding few impurities. The dependence of viscosity of silicate melts on
chemical composition was briefly discussed in [5,10], although the ex-
pression for the glass transition temperature derived there was rather
empirical. Here we will find the composition dependence of Tg within
the framework of the AM model. In Ref. [5] we introduced the “lubri-
cant” coefficient L, so that in the following the composition dependence
of the glass transition temperature will be expressed as Tg(L). The rea-
son to use L is that the molar fraction, x, of the network modifiers, NM,
is not sufficient to describe properly the Tg dependence on composition.
The particular nature of NM determines to what extent the otherwise
“rigid”, oxygen bridges between network formers, NF, are modified to
the “lubricated” state. Therefore, the specific role of eachNM component
is accounted for by a particular, “lubricant”, coefficient 0≤ki≤1. It re-
flects to what extent this component plays a role of NM. It reflects the
ability of the NM to modify the “rigid” oxygen bridge to a “floppy” one.
Although the “lubricant” effect is similar to Dietzel's field strength, the
two concepts are not absolutely identical. At the present state of art
we introduce a rather empirical variable “lubricated fraction”, Li=xiki.
Thus, the lithium oxide is almost perfect modifier, so that kLi2O=1. On
the other hand MgO is not that effective. Therefore we assume that
kMgO=0.1 so that only 10% of Mg plays a role of NM.

In analogy with the molar fraction, x, the “lubricant coefficient”, L,
can be defined as:

L ¼ ∑Li: ð10Þ

We discuss here a homologous series of silicates with no phase sep-
aration. The determination of the composition dependence of Tg(L) is
based on the assumption that at the glass transition temperature the
entropy Sg(L) is independent on composition. This hypothesis is based
on Eq. (6). Indeed, the condition that the left hand side of this equation
is 13 [dPa.s] (i.e. the glass transition point) requires that in the right
hand side the condition

S−Sg ¼ 0 ð11Þ

is fulfilled. Let Sg be the entropy Sg(Lr) at the glass transition tempera-
ture Tg,r of a reference composition Lr. For convenience, in the following
we choose for the reference composition 0.1Li2O.0.9SiO2 so that

Ec

σ

p(Ε)ν(Ε)(Ε)ν(Ε)
ν(Ε)ν(Ε)

p(E)

p 
 , 

 ν,
   

p
.ν

E

Fig. 1. Dependence of the jump frequency ν(E) on the height E of activation energy
(dashed line). The thick solid line is the dependence of the probability p(E) that activa-
tion energy barrier of height E will appear. The product ν(E)p(E) is presented by the
dotted line. Note that the maximum depends on the low energy tail of the p(E)
curve, not on the shape near the maximum of this curve.
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