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It has been some time since an empirical relation, which correlates DC with AC conductivity and contains a
loosely defined coefficient thought to be of order one, was introduced by Barton, Nakajima and Namikawa.
In this work, we derived this relation assuming that the conductive response consists of a superposition of
DC conductivity and an AC conductivity termwhich materialized through a Havriliak–Negami dielectric func-
tion. The coefficient was found to depend on the Havriliak–Negami shape parameters as well as on the ratio
of two characteristic time scales of ions motion which are related to ionic polarization mechanism and the
onset of AC conductivity. The results are discussed in relation to other relevant publications, and they also ap-
plied to a polymeric material. Both theoretical predictions and experimental evaluations of the BNN coeffi-
cient are in an excellent agreement, while this coefficient shows a gradual reduction as the temperature
increases.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Nearly four decades ago, an empirical relation was introduced by
Barton, Nakajima andNamikawawhich is known as BNN relation [1–3].
This expression correlates the electrical conductivity to the dielectric
strength of the lower frequency polarization mechanism through

σ0 ¼ pε0Δεωmax; ð1Þ

where p is a loosely defined parameter, expected to be of order 1, σ0 is
the apparent DC conductivity, Δε is the dielectric strength, ωmax is the
angular frequency which corresponds to the maximum value of dielec-
tric losses, and ε0 is the permittivity of vacuum. The loss peakwhich as-
sociated to Δε is, in general, characterized as broad. Δε may arise
entirely from mobile charge effects and not involve bulk dielectric ef-
fects at all. When Eq. (1) is satisfied, both AC and DC conductivity may
arise from the same type of charge transport mechanism [4,5].

The BNN relation has played an important role in the analysis and
the treatment of frequency response dielectric data [6–11], assuming
that p∼1 with most of the corresponding works dealing with the scal-
ing and universality issues of AC conductivity. In the literature a large
number of different conductive disordered materials have been found
to satisfy Eq. (1). The BNN relation is valid not only in amorphous
solids, ionic glasses, single crystals and polymers but also in a variety
of other materials such as microporous systems [12] and proteins in
hydrated state [13]. The reported values of the coefficient p vary

significantly, about three orders of magnitude from less than one up
to a few hundred [1–5]. However, for a variety of materials, the p
value falls mostly in the range from 0.5 to 10 [14], while in the major-
ity of the cases the p value is near unity, as is shown as well in Fig. 3 of
Ref. [9].

The factors affecting the accurate estimation of p value are dis-
cussed in Refs. [14,15]. However, some aspects should be mentioned
here which are related to the electrode effects. In the case of fully‐
blocking electrodes, if the data do not extend to the region where
σ′(ω) decreases towards zero in the lower‐frequency plateau, the re-
sult might not define the DC conductivity accurately. In the case of
partial‐blocking electrodes behavior two regions of constant σ′(ω)
values could possibly appear [16]. In such cases it could be possible
that the higher‐frequency plateau region would lead to a more plau-
sible p estimate than the lower‐frequency one, even though the lat-
ter is considered as the DC conductivity [16].

In the various models, which have been proposed for the descrip-
tion of the dielectric response of disordered conductive materials, the
BNN relation has been used as a testing equation through the calcula-
tion of p coefficient [7,9,17,18]. The value of p is definitive, in order
one to classify conductive materials. According to Hunt [19], the
role of Coulomb interactions in the derivation of the BNN relation is
of great importance, while the non‐universality of the high frequency
limit of the AC conductivity is incompatible with a universality in the
BNN relation [20]. However, various models proposed for a particular
kind of materials, such as ionic glasses and disordered conductors,
give universal values for the BNN coefficient p. Dyre [7] obtains a
value of p=0.42 by using the random energy barrier model. In a sub-
sequent work Dyre and Schrøder [9] reported a value of p=1.5±0.4
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for the simulation of the symmetric hopping model in the extreme
disorder limit. It has been pointed out by Macdonald [6] that the K1
conducting‐system model could lead to a quantitative value for p,
which depends on the value of β1C of the Kohlrauch–Williams–
Watts (KWW) stretched exponential response function. For ion‐
conducting homogeneous glasses and single crystals with charge mo-
tion allowed in all three dimensions, it has been shown that the only
possible value is β1C=1/3, and the resulting high frequency limiting
response power law exponent is equal to 2/3 [18]. According to
these values, the BNN coefficient has a universal value of p=1.65,
while in the framework of the K1 model, as β1C→1, p should also ap-
proach unity in the limit. In a recent paper Macdonald [15] has pro-
vided a detailed analysis and p estimates for the variety of
conductive‐systemmodels. These models involving a single fractional
exponent, for an appreciable range of exponent values, show that the
p values are quite near 1.

A modified BNN relation has been suggested by Dygas in Ref. [21].
It proposed that the values of modified p coefficient are related to the
spatial extent and time scale of nonrandom local hopping of charge
carriers. It also gave an expression of the BNN coefficient in the case
of Cole–Cole dielectric behavior of ionic polarization mechanism.

The BNN equation quantifies the relation between short range and
long range ions motion of the AC response of conductive materials. To
be specific the p coefficient reflects a measure of the correlation be-
tween AC and DC conductivity. In the present work, we will attempt
to derive the BNN coefficient based on impedance spectroscopy for-
malism, as well as on widely used phenomenological and empirical
relations, and to discuss the results with relevant published works.
The exact knowledge of the parameters on which the p coefficient de-
pends is of great importance, not only from the fundamental point of
view, but also for applications, because this could lead to design and
development of a variety of materials with predetermined dielectric
and electrical properties.

2. Theoretical considerations

The complex conductivity σ∗(ω)=σ′(ω)+ jσ″(ω) is connected to
the total complex dielectric constant ε∗(ω)=ε′(ω)− jε″(ω) via the
following relation

σ � ωð Þ ¼ jωε0ε
� ωð Þ: ð2Þ

In the above relation, if the contribution of the DC conductivity, σ0,
is subtracted from ε∗(ω), then

σ � ωð Þ ¼ σ0 þ jωε0ε
�
d ωð Þ; ð3Þ

where εd∗(ω) represents the complex dielectric constant caused only
from the dynamic conductivity.

In ionic materials, the description of the real part of complex
conductivity spectra in the low frequency regime, below 100 MHz,
and in the absence of electrode polarization effects, is given by the
equation [22–26]

σ ′ ωð Þ ¼ σ0 1þ ω
ω0

� �n� �
; ð4Þ

where n (with 0bnb1) is a constant. The characteristic frequency ω0

corresponds to the onset of AC conductivity. At this frequency, the real
part of complex conductivity becomes twice to that of the DC conduc-
tivity, σ′(ω0)=2σ0. This last equation has been introduced in Ref.
[27], in order to describe crystals with defects and an activated number
of charge carriers. Eq. (4) cannot be taken as amodel relation, because it
is not able to reproduce the individual AC response characteristics
which are derived from other functions of impedance spectroscopy
(i.e. the peak and the dielectric strength, in ε∗(ω) formalism when

ionic dispersions take place). Eq. (4) is considered as a relation which
approximates well only the frequency dependence of the real part σ′,
since at low frequencies, σ′ describes the DC conductivity plateau of
AC response, while at high frequencies, σ′ describes the well-known
Jonscher power lawbehavior [28]. In general, depending on the individ-
ual characteristics of ε″d(ω) responses, Eq. (4) can or cannot describe
satisfactorily the function σ′(ω) at the onset region.

If we assume that the real parts of Eqs. (2), (3) and (4) are equal
not only at the high frequency limit but also at ω=ω0, then in
these cases, from Eqs. (2), (3) and (4) with ω=ω0 we find

σ0 ¼ ε0ω0ε″ ω0ð Þ=2 ð5Þ

and

σ0 ¼ ε0ω0ε″d ω0ð Þ: ð6Þ

So, in these cases the characteristic frequency, ω0, should be de-
fined also as the frequency at which the losses from the DC conductiv-
ity are equal to the respective ones of the dynamic conductivity, since
ε″(ω0)=2ε″d(ω0).

3. The BNN relation

In what follows, let us consider that the conductive response of a
disordered material in the frequency spectrum under study is charac-
terized only by the existence of DC conductivity and an AC conductiv-
ity term. The latter is considered that includes entirely contribution
due to mobile ions effects. These effects should lead to the appearance
of a polarization mechanism in ε∗ formalism, which should take place
around the onset frequency ω0, with loss peak frequency, ωmax, and
strength Δε. The real part of complex conductivity should be given
by using Eq. (3), as follows:

σ ′ ωð Þ ¼ σ0 þ ε0ωε″d ωð Þ: ð7Þ

The ε″d(ω) should be considered as ε″(ω) conductive‐system values,
while for its description the well known and widely used Havrilak–
Negami(H–N) empirical dielectric function is used here as well [29],

ε″d ωð Þ ¼ Δεsin βϕð Þ
1þ 2 ω=ωHNð Þαcos απ=2ð Þ þ ω=ωHNð Þ2α� �β=2 ð8Þ

where

ϕ ¼ arctan
ω=ωHNð Þαsin απ=2ð Þ

1þ ω=ωHNð Þαcos απ=2ð Þ
� �

: ð9Þ

The shape parameters take values in the range 0bα,β≤1 and are
closely related to the slopes in logε″d vs. logω plots (ε″d∼ωα at ω≪ωmax

and ε″d∼ω−αβ at ω≫ωmax). It should be mentioned here that there
existmodelswhich have been proposed for the interpretation of the lim-
iting behavior of theH–N relaxation function, a behavior that is related to
the slopesα and−αβ [30,31]. The limiting case ofα=β=1corresponds
to Debye behavior with a single relaxation time τ=1/ωHN. The frequen-
cy ωHN is related to ωmax through

ωmax ¼ AωHN; ð10Þ

where

A ¼ sin απ= 2β þ 2ð Þð Þ
sin αβπ= 2β þ 2ð Þð Þ

� �1=α
: ð11Þ

The total dielectric losses should be written as

ε″ ωð Þ ¼ ε″d ωð Þ þ ε″c ωð Þ; ð12Þ
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