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Density fluctuations play a crucial role in governing the optical, mechanical, thermodynamic, and kinetic
properties of glass. The relaxation of density fluctuations displays an inherently nonmonotonic behavior,
yielding aminimum in fluctuations following a quench and isothermal hold. Here we investigate the impact of
liquid fragility on the relaxation of density fluctuations in the nonequilibrium glassy state.While fragility has a
direct impact on the kinetics of the relaxation process, theminimum level of density fluctuations is unaffected
by changes in fragility alone. The magnitude of density fluctuations can be minimized by tailoring the thermal
history of the glass.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Density fluctuations are an apparently universal feature of the
topologically disordered glassy state. These fluctuations are respon-
sible for optical scattering [1–3] and are a major contributor to
spatially heterogeneous dynamics in glass and glass-forming liquids
[4–7]. The magnitude of density fluctuations is known to be
dependent on the thermal history of the glass [6,8–11] as quantified
through its fictive temperature [12]. Density fluctuations may also
serve as a source of nonexponential relaxation in glass [13,14]. More
recently, it has been suggested that density fluctuations may act as a
precursor to polyamorphism [15] and may play a crucial role in
governing the strength and fracture behavior of glass [16].

Following the pioneering work of Angell [17–21], glass-forming
liquids may be classified as either “strong” or “fragile,” depending on
whether they display an Arrhenius or non-Arrhenius dependence of
dynamics on temperature, respectively. Fragility itself is defined as
the slope of the logτ versus Tg/T curve at the glass transition
temperature [21],

m≡ dlog10τ

d Tg =T
� � j

T=Tg

; ð1Þ

where τ is relaxation time or viscosity, T is absolute temperature, and
Tg is the standard glass transition temperature. A greater value of
fragility m indicates a larger departure from Arrhenius scaling. A
strong liquid such as silica has m≈17. Fragility is a property of the
liquid state and hence is an equilibrium property independent of

thermal history. However, fragility is known to have a large impact on
the relaxation behavior of the nonequilibrium glassy state [22–29].

While density fluctuations have been studied in both strong
systems (such as silica [3]) and fragile systems (such as orthoterphe-
nyl [30]), there has been no systematic study of the impact of fragility
on the relaxation behavior of density fluctuations. In this paper, we
calculate the relaxation behavior of density fluctuations using an
enthalpy landscape approach where the fragility of the system can be
varied independently of other parameters. Our results show that the
relaxation of density fluctuations is inherently nonmonotonic,
independent of the particular value of fragility. However, fragility
has a direct impact on the kinetics of the relaxation process, giving a
delayedminimum in density fluctuations for higher values of fragility.
This is caused by the more highly fragile systems having a greater free
energy barrier for relaxation at temperatures below Tg. Themagnitude
of the density fluctuations is unaffected by fragility directly but can be
indirectly affected by influencing the dynamics of glasses with
different thermal histories.

2. Enthalpy landscapes and long-time dynamics

The simulation of long-time dynamics is a long-standing problem
in the molecular dynamics community. This problem is especially
important for glass-forming systems, since the glass transition is a
dynamical transition occurring on a laboratory time scale. This time
scale, of course, is much longer than what can be accessed through
traditional atomistic simulation techniques [31], which are limited by
a time step on the order of 1 fs. The solution to this problem is
twofold: (a) separating the vibrational and configurational degrees of
freedom via the enthalpy landscape formalism [32–40] and (b)
accessing the long-time scale dynamics by accounting for the broken
ergodic nature of the configurational transitions [41–46]. In this
manner, dynamics can be calculated on any arbitrary time scale.
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The potential enthalpy landscape of an N-atom system is given by

H = U r1; r2;…; rN ;Vð Þ + PV ; ð2Þ

where the potential energy U is a function of the atomic position
vectors r1, r2, …, rN, and the volume V of the simulation cell. The
pressure P of the system is constant. The H hypersurface yields a
(3N+1)-dimensional enthalpy landscape containing a multitude of
local minima, each of which corresponds to a mechanically stable
configuration of atoms called an “inherent structure.” The volume of
configurational space that drains to a particular minimum via steepest
descent is referred to as a “basin.” The advantage of the enthalpy
landscape approach over traditional atomistic simulation techniques
is that it allows for a separation of the fast vibrations within a basin
from the slower inter-basin transitions corresponding to configura-
tional changes of the system. The inter-basin transitions themselves
span awide range of time scales, including the fastβ relaxation and the
slower α relaxation phenomena [47].

The simulations begin in equilibrium at time t=0 and tempera-
ture T=Teq,

pi 0ð Þ = 1

Y Teq
� � gi exp − Hi

kTeq

 !
; ð3Þ

where pi is the probability of occupying basin i, k is Boltzmann's
constant, gi is the degeneracy of basin i, Hi is its enthalpy, and Y is the
isothermal–isobaric partition function:

Y Teq
� �

= ∑
i

gi exp − Hi

kTeq

 !
: ð4Þ

The dynamics of the system are calculated using a set of coupled
master equations,

dpi tð Þ
dt

= ∑
j≠i

Kji T tð Þ½ �pj tð Þ−∑
j≠i

Kij T tð Þ½ �pi tð Þ; ð5Þ

where the transition rates Kij=τij−1 are defined parametrically in
terms of an arbitrary temperature path, T(t). Assuming transition state
theory,

Kij T tð Þ½ � = νgj exp −
Hij−Hi

kT tð Þ
� �

; ð6Þ

where ν is the attempt frequency and Hij is the transition point
enthalpy [44]. For a sufficiently long isothermal hold, the solution of
the master equation satisfies the detailed balance condition, and the
system equilibrates giving a Boltzmann distribution of occupation
probabilities.

The set of master equations is solved accounting for the broken
ergodic nature of the system following the method of Mauro et al.
[44]. With this approach, the basins of the enthalpy landscape are
grouped into “metabasins” satisfying the condition of internal
ergodicity. The grouping of basins into metabasins is recalculated at
each time step to ensure that the criterion of internal ergodicity is
always satisfied. The slow dynamics of the system are then calculated
using a reduced set of master equations between metabasins, where
the inter-metabasin transition rates are computed as described in Ref.
[44]. With this approach, the dynamics of the system can be exactly
calculated on any arbitrary time scale.

3. Isolating fragility in the enthalpy landscape formalism

Our simulations are based on the enthalpy landscape of selenium
[45], calculated using classical two- and three-body interatomic
potentials [48] that were derived from quantum mechanics using

Møller–Plesset perturbation theory [49] and the Dunning basis set
[50]. Transition points in the selenium enthalpy landscape involve
elementary bond angle and torsion angle transitions, which have a
nearly constant enthalpy barrier of ΔHij=Hij−Hi≈1 eV (for HiNHj)
[45,51]. Since the activation enthalpies in selenium satisfy ΔHij≈1 eV,
this leads to a simplified analytical form for the equilibrium transition
rate that we can use to isolate the features of the enthalpy landscape
that control fragility:

K Tð Þ = νg Tð Þexp −ΔH
kT

� �
= νexp −ΔH−kTln g Tð Þ

kT

� �
; ð7Þ

where g(T) is the average number of accessible transition paths at
temperature T. Combining this equationwith the definition of fragility
in Eq. (1), fragility can be expressed as

m = − 1
ln10

− dlog10 νg Tð Þexp −ΔH = kTð Þ½ �
d Tg = T
� � ; ð8Þ

which reduces to

m = − 1
ln10

1 +
dln g Tð Þ
d Tg = T
� �

0
@

1
A +

ΔH
kTgln10

: ð9Þ

This equation is used to isolate the impact of fragility on the
relaxation behavior of glass. Based on Eq. (9), we construct a series of
enthalpy landscapes having identical properties as selenium except
with varying degrees of fragility. These new landscapes are used to
simulate hypothetical glass-formers that are identical to selenium in
every respect except with different values of fragility. In other words,
we wish to adjust the fragility of the system while maintaining the
same equilibrium enthalpy and volume vs. temperature curves and
also a constant glass transition temperature Tg. In this manner, the
impact of fragility on the relaxation of density fluctuations can be
separated from the influence of other properties such as Tg. Eq. (9)
provides two possible terms for adjusting fragility. However, the first
term in Eq. (9) must be held constant since the shape of the g(T)
function has a direct impact on the equilibrium enthalpy and volume
curves. Hence, any change in g(T) will directly affect other properties
of the supercooled liquid besides the fragility. This leaves only ΔH as a
free parameter for adjusting fragility, but variation in ΔH also affects
the glass transition temperature since a greater enthalpy barrier
would lead to a higher Tg. To maintain a constant glass transition
temperature, the transition rate must be held constant at T=Tg.
Hence,

K Tg
� �

= ν exp −
ΔH−kTgln g Tg

� �
kTg

0
@

1
A ð10Þ

must be held constant while simultaneously adjusting ΔH to vary the
fragility:

ΔH → ΔH + δH: ð11Þ

This can be accomplished by adding a constant to ln g(T),

ln g Tð Þ→ln g Tð Þ + δ ln g; ð12Þ

where δH and δlng are chosen to obtain a constant Gibbs free energy
barrier, ΔG=ΔH−kTgln g(Tg), at the glass transition temperature:

δH = kTgδ ln g: ð13Þ

Hence, Eq. (13) provides a relation for adjusting fragility while
preserving a constant glass transition temperature and equilibrium
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