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Glasses are known to exhibit quantitative universalities at low temperatures, the most striking of which is the
ultrasonic attenuation coefficient Q−1. In this work we develop a theory of coupled generic blocks with a
certain randomness property to show that universality emerges essentially due to the interactions between
elastic blocks, regardless of their microscopic nature.
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1. Introduction

Starting with the pioneering study of Zeller and Pohl [1],
experimental work over the last 40 years has shown conclusively
that the thermal, acoustic, and dielectric properties of virtually all
amorphous materials are not only qualitatively different than those of
crystals, but also show a truly amazing degree of quantitative
universality [2–4]. The theoretical interpretation of the low temper-
ature data on amorphous materials has for the last four decades been
dominated by the “tunneling two state system” (TTLS) model. This
model gives an attractive qualitative explanation of the characteristic
nonlinear effects observed in ultrasonic and dielectric absorption
(saturation, echoes, hole burning). In addition it predicts a frequency
and temperature dependence of the ultrasonic absorption Q−1(ω,T)
(here defined as l−1λ/2π2 in terms of the phonon mean free path and
wavelength) which appears to be in fairly good agreement with the
experimental data; in the present context we note that Q−1 is
predicted to be independent of ω and T, and the same within a factor
of 2 in two regions of the parameter space, in which, at least in terms
of the model, the physics is very different, namely the high frequency
“resonance regime” (kBT, ℏ/τ≪ω, where τ is a characteristic
relaxation time of the thermally excited TTLSs) and the low frequency
“relaxation regime” (ω≪ℏ/τ≪kBT). This prediction appears to agree
reasonably well with the data (see Figures 2 and 3 in ref. [4]). Finally,
at the cost of introducing a fairly large number of fitting parameters,

the model can reproduce most of the experimental data in the low-
temperature regime reasonably quantitatively.

Nevertheless, there are a number of problems with the TTLS
model. First, while in a few cases (such as KBr-KCN solutions [5])
it is possible to make a plausible identification of the “two level
systems”, in most amorphous materials their nature remains a matter
of conjecture. Secondly, the model as such says nothing about the
behavior at intermediate temperatures (1 K–30 K)which also shows a
very strong degree of qualitative (though not quantitative) univer-
sality. A third difficulty relates to the striking quantitative universality
and small numerical value of the quantity Q−1(ω); whether observed
directly or inferred (in the “resonance regime”) from the coefficient of
the log(T/T0) term in the ultrasound velocity shift, this quantity has
the value (3±2)×10−4 for almost all non-metallic glasses measured
to date [4].While the TTLSmodel contains enough independent fitting
parameters to “explain” this numerical result, the explanation
requires a degree of statistical coincidence between these parameters
which has no obvious basis in the model, and is prima facie nothing
short of amazing. Finally, the model in its original form neglects the
fact, which is emphasized below, that as a result of interaction with
the strain (phonon) field, the TTLSs must acquire a mutual interaction
[6]; while there exist theoretical approaches which take this feature
into account and even use it [7] to attempt to account for the small
universal value of Q−1, it is not obvious that at this end of the process
the TTLS structure is preserved, so that a question of self-consistency
may arise.

In [8,9] the conjecture was made that if we start from a very
generic model in which at short length scales there is a nonzero
contribution to the stress tensor from some non-phononic degrees
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of freedom whose only necessary feature is that their spectrum is
not harmonic-oscillator-like, and take into account their phonon-
mediated mutual interaction, we will recover at long length scales a
picture which reproduces most, if not all, features of the experimental
data below 1 K. The goal of the present paper is quite modest: To
attempt a somewhat more quantitative justification of this conjecture
with respect to one specific feature, namely the (near) frequency
independence and small universal value of Q−1 in the regime kBT,
ℏ/τ≪ω (i.e. what in the TTLS model is known as the high frequency
resonance regime). We do not attempt to discuss here the behavior
of Q−1 in other regimes (except for ℏ/τ≪ωbkBT), non-linear effects
or (except briefly at the end of Section 2.2) the intermediate-
temperature behavior.

We believe that it is one of the strengths of the present work that
our result does not rely on adjustable parameters, or the existence
of other microscopic (unmeasurable) universal ratios to explain the
observable one [10–14] (though cf. [7]). The only two inputs on
which our outcome depends sensitively are the ratios cl/ct and χl/χt

(cf. below for details of the notation) both of which are observed
experimentally to vary little between different amorphous systems
(also cf. Appendix-A). Our third input r0, which is the size of a
“microscopic amorphous block” (defined below) only enters into our
equations logarithmically.

The organization of the paper is as follows: In Section 2 we define
our model and introduce the central object of our study, namely the
dimensionless stress-stress correlation, whose thermally-averaged
imaginary part is themeasured ultrasonic absorptionQ−1. In Section 3
we carry out a real-space renormalization calculation of the average
of Qm

−1(ω) over the frequency ω and the starting state m (for details
of the notation see below) and show that it vanishes logarithmically
with the volume of the system and, for experimentally realistic
volumes, has a surprisingly small value, ~0.015. In Section 4 we argue
on the basis of a calculation up to second order in the phonon induced
interaction, that the functional form of Q−1(ω) at T=0 should be
(lnω)−1, and that when we combine this result with that of Section 3,
the numerical value of Q−1 for experimentally relevant frequencies
should be universal up to logarithmic accuracy and numerically close
to the observed value 3×10−4. In Section 5 we assess the extent to
which our calculations are consistent with experiments in the (linear)
resonance regime. In Section 6 we attempt to assess the significance
of our results.

Throughout this paper we set ℏ=kB=1. The notation a denotes
a “typical” atomic length scale. The suffix α= l, t denotes the phonon
polarization (l=longitudinal, t=transverse).

2. Formulation of the problem

Consider a cube of an arbitrary isotropic amorphous material, with
side L which is assumed large compared to “microscopic” lengths a
such as the typical interatomic distance, but is otherwise arbitrary.We
define for such a block the strain tensor eij in the standard way: If
→u →r
� �

denotes the displacement relative to some arbitrary reference
frame of the matter at point →r, then

eij =
1
2

∂ui

∂xj
+

∂uj

∂xi

 !
ð1Þ

(Note that the anti-symmetric part of the tensor ∂ui/∂xj corre-
sponds to a local rotation; since a spatially uniform rotation costs no
energy, any terms in the Hamiltonian associated with this part will be
of order higher than zeroth in the spatial gradients, and hence for the
purposes of the ensuing argument irrelevant in the renormalization-
group sense; we therefore neglect any such terms in the following).

Let us expand the Hamiltonian of the block in a Taylor series in the
strain eij:

Ĥ = Ĥ0 + ∑
ij
eij T̂ ij + O e2

� �
ð2Þ

where the stress tensor T̂ ij is defined by

T̂ ij = ∂Ĥ = ∂eij ð3Þ

Note that in general, in a representation in which Ĥ0 is diagonal,
T̂ ij will have both diagonal and off-diagonal elements.

As usual, we can define the static elasticity modulus χ(0), a fourth
order tensor, by

χ 0ð Þ
ij:kl ≡ V−1 ∂〈T̂ ij〉=∂eij

� �
eq

≡ V−1〈∂2Ĥ=∂eij∂ekl〉eq
ð4Þ

where V=L3 is the volume of the block and the suffix “eq” denotes
that the derivative is taken in the thermal equilibrium state (both
sides of Eq. (3) are implicitly functions of temperature T). Since by
definition the properties of an isotropic amorphous material must be
invariant under overall rotation, symmetry considerations constrain
χij : kl

(0) to have the generic form

χ 0ð Þ
ij:kl = χl−2χtð Þδijδkl + χt δikδjl + δilδjk

� �
ð5Þ

where χl and χt are the standard longitudinal and shear elastic
constants; in the approximation of an elastic continuum, these are
related to the velocities cl and ct of the corresponding longitudinal and
transverse sound waves (of wavelength λ such that a≪λ≪L) by1

χl;t = ρc2l;t ð6Þ

where ρ is the mass density of the material. Such an approximation
however throws away all the effects of interest to us, as we shall now
see.

2.1. The Stress-Stress Correlation Function

Let us separate out from the Hamiltonian, the purely elastic
contribution Ĥel, namely,

Ĥel eij
� �

= const: + ∫1
2
d3r∑

ijkl
χ 0ð Þ

ij:kleij
→r
� �

ekl
→r
� �

+
1
2
∑
i
ρ→̇u

2
i

→r
� � ð7Þ

(where it is understood that the velocity is slowly varying over
distances a, as above). Similarly we define the “elastic” contribution to
the stress tensor T̂ ij by

T̂
elð Þ
ij ≡∑

ijkl
χ 0ð Þ

ij:klekl ð8Þ

(In above, eij (and ui) should strictly be treated as operators, but
we prefer not to complicate the notation unnecessarily). Then quite
generally, we have

Ĥ eij
� �

≡ Ĥel eij
� �

+ Ĥ′ eij
� �

ð9Þ

1 Note that despite the notation χ has the characteristics of a “stiffness” (∼ inverse
susceptibility) rather than a “susceptibility”.
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