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Molecular dynamics simulationsof linearpolymermelts representedusingsimplebead-necklacemodels showed
for the first time a distinct separation between primaryα- and secondary Johari–Goldsteinβ-processes. The split
is observed only for models where the bead diameter is much larger than the bond length connecting the beads.
The overlap of neighboring (along the chain) beads results in a mismatch between local intramolecular
correlations and intermolecular packing (cage size), which leads to two processes in segmental relaxation
characterized by torsional autocorrelation function. The observed β-process shows all characteristics and
correlations expected for the true Johari–Goldstein process.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The mechanism(s) of the Johari–Goldstein (JG) secondary relaxa-
tion processes (also known as β-relaxation) in amorphous polymers
and its relationship to the primaryα- or glass relaxation remain a topic
of ongoing research and discussions [1,2]. While it is generally agreed
that in linear chains the JG β-process involves local motion of the
polymer chain backbone, the nature of these motions, whether they
are spatially and temporally homogeneous or heterogeneous, and the
relationship betweenmolecular motions responsible for the β- andα-
processes, remain controversial [2] and a subject of ongoing research
[3]. Ideally, molecular dynamics (MD) simulations are well suited to
help elucidate themechanism(s) of relaxations in polymers. However,
the bifurcation of the α- and β-processes in polymers typically occurs
on time scales inaccessible to MD simulations using chemically
realistic, atomistically detailed models or force fields. For example,
the relaxation times for the α- and β-processes in 1,4-polybutadiene
(PBD)measured by dielectric relaxation arewell resolved only on time
scales approaching milliseconds [4,5]. Clearly accessing such times
using brute force MD simulations and chemically realistic models is
impractical.

Nevertheless, in our recent works [6–8] we demonstrated that
reduction or elimination of dihedral barriers in PBD significantly
reduces glass transition of this polymer and promotes the separation
between α- and β-relaxations allowing the observation of two well-
separated relaxations on time scales accessible toMD simulations (less
than a microsecond). Extensive simulations of melts [6–8] and blends
[8–10] comprised of PBD chains with reduced dihedral barriers

allowed us for the first time to use MD simulations to systematically
investigate the mechanisms of the β-relaxation and its correlation
with the α-relaxation as a function of thermodynamic conditions.
While these works provided a great insight into understanding of
secondary relaxations it is hard to determine which of the observed
mechanisms/correlations are a generic characteristic of the β-
relaxation andwhich are specific for the investigated polymer. Despite
the fact that in those works we used a united atom model (a single
bead representing CH3, CH2, or CH groups) all other details of the
chemical realistic PBD were preserved to allow an accurate represen-
tation of structural and conformational properties of PBD melts. For
example, the chains were comprised of two types of beads with
different diameters (σ=4.0 and 3.4 Å), two different bond types, five
types of bends, and eleven dihedral types. Each chain itself was a
randomsequence of trans and cisunitswith 10% of the units containing
a vynil group to prevent crystallization. Therefore the structure of
investigated PBD chains contained multiple intramolecular structural
and conformational mismatches, all of which could be responsible for
defining the JG relaxation observed in those systems.

To obtain a more universal and generic understanding of the β-
relaxation and its correlation with theα-relaxation, simulations using
simpler, more generic polymer models that do not contain chemical
specificity are desirable. An excellent example of such models are the
well known bead-spring or bead-necklace polymer models where
polymer chains are represented as a collection of beads each
representing a monomer or a statistical segment. Molecular simula-
tions using these polymer models have been extremely useful in
providing molecular level insight in a broad range of polymer physics
areas as well as establishment of correlations between various
physical, structural, dynamical andmechanical properties for a variety
of polymeric systems (see e.g. ref. [11] and references therein).
Molecular simulations using such models are several orders of
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magnitude faster than those with atomistically detailed models and
therefore have been extensively used to sample dynamic relaxations
in polymeric systems [11,12]. While MD simulations with bead-
necklace models have been extensively used to understand chain and
segmental relaxations for many polymeric systems near the glass
transition, none of those simulations has reported an observation of a
secondary relaxation process in linear polymer melts. This raises a
fundamental question whether simple bead-necklace models, in
principle, can possess enough structural or conformational character-
istics that would allow them to show both α- and the JG β-segmental
relaxations. In this work we address this problem and demonstrate
that polymer melts comprised of simple bead-necklace chains can
show two distinct relaxations, one of which possesses all known
characteristics of the JG secondary relaxation.

2. Model description and simulation details

Taking into account the successful observation of distinct α- and
β-relaxations in our previous simulations of PBD chainswith reduced
dihedrals, we focus our investigation on a coarse-grainedmodel with
parameters that are similar to those used for PBD. In our bead-
necklace model polymer chains are represented by a collection of
identical beads interacting via Lennard–Jones (LJ) potential with
σ=4.0 Å and ε=0.0959 kcal/mol. These parameters are similar to
those used to describe CH3 groups in PBD as well as other realistic
polymers using a united atom representation. This specific choice of
σ and εwas done purely for convenience of comparing the results for
the bead-necklace model with previous PBD simulations as well as
helping to identify the range of thermodynamic conditionswhere the
potential separation of α- and β-relaxations can be expected. The
beads were connected by rigid (constrained) bonds of the same
length l. Systems with different l have been investigated, ranging
from l=1.4 Å, therefore allowing aσ/l ratio of 2.85which is similar to
the corresponding value in PBD and other realistic polymers, to
l=4.0 Å (σ/l=1.0) which corresponds to a typical coarse-grained
representation of polymer chains. In order to minimize contamina-
tion of the short time dynamics by the high frequency modes created
by intramolecular interactions of close neighbors, the LJ interactions
between atoms separated by three bonds or less were excluded.
However, to preclude the complete overlap of close neighbors we
also introduced bends all of which were kept rigid at 120°. No
dihedral potentials were applied. Therefore, the selected bead-
necklace model has a very simplistic representation of the polymer
(compared to e.g. united atommodel of PBD) and consists of one type
of beads, bonds, and bends as illustrated in Fig. 1 for the two limiting
cases σ/l=2.85 and 1.0.

All systems contained 100 chains and each chain was comprised of
76 beads. Simulations of polymer melts were performed using an NPT
ensemble at specified temperatures andpressures. A time step of 1.0 or
2.0 fs (corresponding to 0.0004 or 0.0008 in reduced time units
defined as (ε/mσ2)1/2t) was used depending on the temperature.

Equilibration runs over 5 ns were followed by production runs with
total trajectory length ranging from 40 to 300 ns (or from 16,000 to
120,000 in reduced units). A cutoff radius of 10.0 Å (2.5σ) was used for
truncation of the LJ interactions. Bonds and bends were constrained
using the velocity-Verlet form of the SHAKE algorithm [13].

In this work the segmental dynamics/relaxations have been
characterized by torsional autocorrelation function (TACF):

TACF tð Þ = 〈jθ tð Þjjθ 0ð Þj〉−〈jθ 0ð Þj〉2

〈jθ 0ð Þj2〉−〈jθ 0ð Þj〉2
ð1Þ

Here |θ(t)| is the (absolute) value [14] of the conformational angle
for a given dihedral at time t and the ensemble average is taken over
all dihedrals. The TACF decays as backbone dihedrals explore
conformational space through conformational transitions. We have
shown previously that the decay of the TACF in PBD closely reflects
segmental relaxation as probed by dynamic neutron scattering
[15,16], NMR T1 relaxation [17], and dielectric relaxations [18]. We
also showed that in simulations of freely-rotated and lower-barrier
PBD, where a clear separation of α- and β-relaxations has been
observed, the corresponding relaxation times for these processes
obtained from TACF, dipole moment autocorrelation function, and
incoherent dynamic structure factor were very similar [6–8]; further
illustrating that the TACF is a representative characteristic of
segmental relaxation in polymeric systems.

We fit the TACF with a single relaxation process or a sum of two
processes, labeled β (short-time) and α (long-time) using

TACF tð Þ = Aβfβ tð Þ + Aαfα tð Þ ð2Þ

Here fα(t) and fβ(t) are functions representing the α- and β-
relaxations, respectively, while Aα and Aβ are amplitudes of these
processes with the constraint Aα+Aβ≤1.0. We assume that the
contribution of each relaxation process to the (partial) decay of TACF,
resulting from segmental motion associated with the relaxation
process, can be represented by the Kohlrausch–Williams–Watts
(KWW) function [19,20]

fi tð Þ = exp ⌊− t
τ

� �β

⌋ ð3Þ

where τ is an apparent relaxation parameter and β is a stretching
exponent. When fitting with a single relaxation process we set Aβ=0
Relaxation times for the α-relaxation (τα) and β-relaxation (τβ)
processes were determined from the time integral of the
corresponding relaxation function (fα(t) and fβ(t)) obtained from
fitting. Temperature dependences of τα and τβ were described by
either a Vogel–Fulcher dependence [21,22]

ln τi Tð Þ½ � = C1 +
C2

T−T0
ð4Þ

Fig. 1. Schematic representation of the bead-necklace model used in this work a) σ/l=2.85, and b) σ/l=1.0.
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