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Four topics are treated within the framework of the defect diffusion model (DDM). First, it is shown how the
relationship between EV*/H* (ratio of the apparent isochoric activation energy to the isobaric activation
enthalpy) and monomer volume for polymers that has been pointed out by Floudas and co-workers [G.
Floudas, K. Mpoukouvalas and P. Papadopoulos, J. Chem. Phys. 124 (2006) 074905] is predicted. Next, it is
shown that in the DDM, scaling arises because the critical temperature can be represented approximately by
a power law. Consequently, in the DDM scaling is always approximate and significant departures from
scaling, as is observed in the case of hydrogen bonded materials for example, are matters of degree. It is also
shown how the connection of scaling with EV*/H* is a natural consequence of the DDM. Finally, DDM
calculations of the defect correlation length are carried out and compared with experimental dynamical
correlation lengths measured using the 4D3CP solid state NMR method.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The effects of volume and temperature on the properties of glass-
forming liquids are topics of current interest [1–4]. In order to sepa-
rate these effects, the ratio of the apparent isochoric activation energy,
EV or EV*,

EV = EV* =
∂ lnx

∂ 1=Tð Þ
� �

V
ð1Þ

to the isobaric activation enthalpy, EP or H*

EP = H* =
∂ lnx

∂ 1=Tð Þ
� �

P
; ð2Þ

where x is a transport property such as electrical relaxation time,
viscosity or ionic conductivity, is often considered. This ratio can be
written

EV*
H*

=
∂ lnx
∂T

� �
V
= ∂ lnx

∂T

� �
P
: ð3Þ

Many experimental evaluations of this ratio have been reported
[3,5] and the authors have recently derived an expression for the ratio

based on the defect diffusion model (DDM) [6,7]. In a recent paper,
Floudas et al. have established a connection between EV*/H* and the
monomer volume, Vm, for polymers [3]. They find that as Vm increases,
in general EV*/H* decreases. This trend is accompanied by significant
deviations. In the present paper, it is shown that this connection is
accounted for by the DDM. A second experimental observation related
to EV*/H* is known as scaling. Specifically, it has been found that
for many glass-forming liquids ln(x) scales at least approximately
with 1/(TVγ) and that scaling is related to EV*/H*. A review of the work
until 2005 is given in Ref. [5]. In the present paper, it is shown how the
phenomena related to scaling are natural consequences of the DDM.
Finally, the DDM is used to calculate correlation lengths and the
results are compared with experimental dynamical correlation
lengths measured using the 4D3CP solid state NMR method [8–12].

2. Theory

The basic assumptions for the DDM are that a super-cooled liquid
contains mobile single defects (MSDs), immobilized clustered single
defects (ICSDs) and normal liquid molecules. In the case of fragile
liquids, one may consider defects as persistent packets of free volume,
MSDs beingmobile defects with greater than average free volume and
ICSDs having less than average free volume. Defects are persistent in
that they are conserved, neither created nor destroyed, and simply
converted thermodynamically betweenMSDs and ICSDswith changes
in pressure and temperature. Transitory molecular configurations
with instantaneous free volumes higher or lower than average are not
permanent “defects” in this sense, but rather contribute to the high
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frequency background fluctuations of the molecular properties of the
fluid. MSDs and ICSDs are associatedwith regions where the density is
smaller and larger than average, respectively. Consequently, MSDs are
large and ICSDs are small [13]. Because ICSD-rich regions of the fluid
are rigid regions and MSD-rich regions are mobile, dynamic hetero-
geneity is an essential aspect of the DDM picture of super-cooled
liquids. Finally, all of the physical properties of a fragile super-cooled
liquid are influenced by the tendency of theMSDs to cluster (i.e., to form
ICSDs/rigid regions) as temperature decreases or pressure increases.

In the DDM the concentration of MSDs, c1, is given by [7]

c1 = c exp − βKWWB�T0:5η
C

T−TCð Þ0:5η 1−δð Þ

 !
: ð4Þ

This leads to the following equation for the dielectric relaxation
time

τDDM = c−1=βτo exp
Δo

kBT

� �
exp

B�T0:5η
C

T−TCð Þ0:5η 1−δð Þ

 !
: ð5Þ

Δ0 is the smallest barrier opposing a defect hop. The exponential
containing Δ0 together with the prefactor τo, give the shortest pausing
time for the jump of a defect [14,15]. As usual, the Arrhenius termwill
be omitted so that the working equation is

τDDM≈c−1=βτo exp
B�T0:5η

C

T−TCð Þ0:5η 1−δð Þ

 !
: ð6Þ

In Eqs. (5) and (6), c is the total concentration of defects (i.e., the
fraction of lattice sites occupied by a defect), τo is the shortest time for
the jump of a defect, and βKWW is the Kohlrausch–Williams–Watts or
stretched exponential parameter associated with the relaxation
function [16,17]

ϕ tð Þ = A exp − t=τDDMð ÞβKWW
� �

: ð7Þ

(1−δ)=V(T,P)/Vo and V(T,P) is the volume of the liquid at pressure P,
and absolute temperature T, and Vo is a reference volume at P=0 at a
given reference temperature. For consistency with the notation given
in other papers in the literature, for the remainder of this paper,V(T,P)/
Vo will be referred to simply as V. η is an integer (1, 2 or 3) describing
the dimensionality of the correlation volume [18]. If δ=0 and η=3,
a 3/2 power law results. Materials such as poly(propylene glycol) are
successfully described by η=3 [13]. If, on the other hand, the
correlation volume grows in a two-dimensional manner, with η=2,
then Eq. (6) reduces to the standard Vogel equation [19], (assuming
that volume is not strongly dependent upon pressure or temperature
i.e. δ=0). For example, glycerol is best described by η=2 [13]. A
correlation length, ξj,DDM, corresponding roughly to the distance
beyond which the defects do not interact, is given by [14,18]

ξj;DDM Tð Þ = Lj
TC

T−TC

� �0:5
: ð8Þ

TC is the critical temperature at which all defects would be clustered
ICSDs if the glass transition did not intervene. The critical temperature,
TC, depends on pressure, i.e. TC=TC(P). (See also Eq. (13) belowwhere
a simple Bragg–Williams lattice model for TC is discussed.) The
correlation length of Eq. (8) plays a central role in the DDM analysis,
and, in particular, in the derivation of the VTF-like temperature laws
such as Eq. (6) [20,21]. As will be shown, this quantity appears to be
associated with experimental dynamical correlation lengths. As the
temperature falls, more defects become immobile, locked into clusters
and thus unavailable to promote relaxation. Only mobile single
(uncorrelated) defects (MSDs) remain effective in producing relaxa-

tion, and this depletion ofMSDswith falling temperature leads directly
to Eq. (6).

Another parameter in the exponent of Eq. (6) is

B� = − L1L2L3 ln 1−cð Þ
d3oβKWW

: ð9Þ

do is the average distance between neighboring sites at P=0 and at a
given reference temperature. The three indices on the “direct”
correlation lengths Lj allow for anisotropic defect–defect interactions.
If the interactions are isotropic, then L1=L2=L3=L.

As has been pointed out [7], Eq. (6) is only applicable between TB
(or TLL) and Tg. It is not valid below Tg because rigidity percolates
below Tg and themotion of the MSDs is thereby restricted. In addition,
Eq. (6) is not expected to apply to temperatures above TB (or TLL)
which is on the order of 1.2 Tg. For temperatures above TB, we assume
that jamming caused by the ICSD-rich regions is greatly diminished
and sufficient free volume becomes available to allow new relaxation
processes in addition to those controlled by MSD hopping diffusion.
Consequently, the properties of the liquid will vary differently with
temperature and pressure above and below TB but the changes in
behavior are likely to be continuous and small. In fact, property
changes near TB are often subtle, being observable primarily via the
temperature dependence of a property rather than as a discontinuous
change in a property itself [22].

As shown elsewhere [7], if the isothermal compressibility, κT, and
isobaric volume thermal expansion coefficient, αP, are defined in the
usual manner,

κT = − 1
V

∂V
∂P

� �
T

ð10Þ

and

αP =
1
V

∂V
∂T

� �
P
; ð11Þ

the assumption that TC=TC(P) leads to

EV*
H*

� �
DDM

=
1−αP

κT
T
TC

∂TC
∂P

� �
T

1 +
αP T−TCð Þ

0:5η

: ð12Þ

(An approximate version of Eq. (12) was given in an earlier note [6].)
Eq. (12) has been used to predict the ratio EV*/H* and its temperature
dependence for several materials [7] and good agreement between
theory and experiment is found.

An interesting form of Eq. (12) is obtained using a simple Bragg–
Williams treatment of a (defect) phase separation transition (for nearest-
neighbor pair interactions with equal occupancy of A and B sites). It has
been pointed out that the critical demixing temperature is given by [23]

TC =
z Δhj j
4kB

=
z Δε + PΔvj jð Þ

4kB
ð13Þ

where z is the lattice coordination number, kB is Boltzmann's constant,
and Δh=Δε+PΔv is the decrease in enthalpy resulting from the
formation of a defect pair:

defect + defect ↔ defectð Þ2 ð14Þ

where Δε is the decrease in pair energy and Δv is the decrease in
volume.

From Eq. (13) one finds

∂TC =∂Pð ÞT≈z Δvj j = 4kB ð15Þ
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