
Isobaric and isothermal glass transition of PMMA: pressure-volume-temperature
experiments and modelling predictions

Luigi Grassia ⁎, Alberto D'Amore
Department of Aerospace and Mechanical Engineering, The Second University of Naples, Aversa (CE), Italy

a b s t r a c ta r t i c l e i n f o

Article history:
Received 7 May 2010
Received in revised form 27 July 2010
Available online 25 August 2010

Keywords:
Glass transition;
Relaxation time;
PVT behaviour;
Amorphous polymers

The scaling law for relaxation times, recently proposed by Casalini and Roland, is utilized in the framework of
KAHR (Kovacs, Aklonis, Hutchinson, and Ramos) phenomenological theory. With this approach it is shown
that the pressure, volume, and temperature (PVT) data obtained on Poly(methyl-methacrylate) (PMMA) can
be reliably predicted, in the region of the alpha-relaxation, by using only two fitting parameters, namely: the
relaxation time in the reference state, τg, and the fractional exponent, β, that describes the dispersion of the
alpha-relaxation.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Under isobaric conditions the supercooled metastable state of a
liquid can be obtained via rapid cooling from equilibrium conditions.
The reduction in temperature is accompanied by a progressive
slowing down of diffusive motions, until their virtual arrest.
Vitrification implies that the material behaves as a solid over typical
laboratory timescales, the glass preserving a disordered, liquid-like
microscopic structure [1–4]. Operationally the glass transition
temperature, Tg, depends on the timescale, since the glass formation
is a kinetic process. Tg can be defined as the temperature at which the
relaxation timescale is of the order of the experimental time window.
On the other hand, glass can be obtained by isothermal compression,
which makes clear that the volume (or the pressure), along with the
temperature, plays an important role in the slowing down of
molecular motions [2–5]. Thus, the functional form of the relaxation
time should contain both the temperature and the volume depen-
dence [2–5]. Accordingly Casalini and Roland [2–4] proposed the
following scaling law for the relaxation time:

τ T ;Vð Þ = ℑ TVγ� � ð1Þ

where ℑ is an unknown function andγ amaterial-dependent constant.
This scaling property has been verified for over forty materials using
different techniques, with the parameter γb8.5 [2–4,6].

Recently, Casalini and Roland [6,7] discussed how the scaling
properties can be derived from the temperature, T, and the volume, V,

dependencies of the entropy, and using the Avramov model [8]
derived the following expression for the τ(T, V) dependence [6,7,9]:

τ T ;Vð Þ = τ0 exp
A

TVγ

� �ϕ� �
ð2Þ

where τ0, A, ϕ, and γ are constants. Eq. (2) satisfies the scaling law
expressed by Eq. (1) and gives a good description of experimental
data over a broad dynamic range [6,7,9].

In literature two main phenomenological models have been
utilized in order to predict the behaviour of glass forming materials,
namely the Kalroush, Aklonis, Hutchinson, and Ramos (KAHR) model
[10,11] and the Tool–Narayanaswamy–Moynihan (TNM) model [15–
17]. These theories are both capable of capturing the nonlinearity and
memory effect of structural relaxation. Despite the fact that the
parameters of KAHR and TNM theories are strongly correlated (their
use is really equivalent under isobaric conditions) the KAHR theory
accounts explicitly for the pressure and represents a more viable
formalism to describe the PVT behaviour under arbitrary temperature
and/or pressure histories [12–14]. For completeness, it should be
mentioned that the parameters in the KAHR theory still suffer some
lack of physicalmeaning due to the arbitrary dependence of relaxation
time on temperature, pressure, and dimensionless volume [12–14].

2. Methods

The equation that describes the volume relaxation kinetics in the
presence of an arbitrary temperature and pressure history reads [10–14]:

V = Ve + Ve ∫
ξ

0
− αe−αg

� 	 dT
dξ′

− ke−kg
� 	 dP

dξ′

� �
M ξ−ξ′
� 	

dξ′ ð3Þ
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where the suffix g and e indicate the glassy and the liquid/equilibrium
state, respectively, α is the isobaric thermal expansion coefficient, k is
the isothermal compressibility, andM is thememory function defined
as follows:

M ξð Þ = exp − ξ=τg
� 	βh i

ð4Þ

where τg is the relaxation time in the reference state, β is the
fractional exponent that describes the dispersion of the alpha-
relaxation and ξ is the reduced time defined as follows:

ξ = ∫t

0

τgdt
′

τ
ð5Þ

where t is the time and τ the relaxation time.
Here, the expression proposed by Casalini and Roland [6,7,9] is

utilized as the functional form of the relaxation time in the KAHR
(Kovacs, Aklonis, Hutchinson and Ramos) model [10,11] that predicts
the volume relaxation kinetics under arbitrary pressure and temper-
ature histories [10–14]. In particular the relaxation time, τ, has been
expressed by Eq. (2), which can be rewritten in terms of the isochoric
fragility, mV, defined as [2]:

mV =
∂ logτ

∂ Tg =T
� 	 j

Tg ;V=cost

: ð6Þ

From Eqs. (2) and (6) it follows that the parameter A is directly
correlated to mV, according to the following equation

mV = ϕ
A

TgV
γ
g

 !ϕ
1

ln10
ð7Þ

where Tg and Vg are the temperature and the specific volume at the
glass transition. Consequently, Eq. (2) can be rewritten as:

lnτ = lnτ0 +
mV ln10

ϕ
TgV

γ
g

TVγ

 !ϕ

: ð8Þ

At the glass transition the relaxation time reduces to:

lnτg = lnτ0 +
mV ln10

ϕ
ð9Þ

in a way that the final expression for τ is the following:

lnτ = lnτg +
mV ln10

ϕ
TgV

γ
g

TVγ

 !ϕ

−1

" #
: ð10Þ

From Eqs. (3–5) and (9), the constitutive equation for the specific
volume, V, takes the following final expression:

V = Ve + Ve ∫
t

0
− αe−αg

� 	 dT
dt′

− ke−kg
� 	 dP

dt′

� �

×exp − ∫
t

t′
dt″ =τg exp

mV ln10
ϕ

TgV
γ
g

TVγ

 !ϕ

−1

" #" # !β
2
4

3
5dt′:

ð11Þ

3. Results and discussion

In what follows we report on a procedure that, step by step,
allowed us to implement Eq. (11). It will be shown that most of the
material's functions (namely, αg, αe, kg, and ke) and the material's
properties (γ, mV and ϕ) appearing in Eq. (11) can be derived directly

from opportune PVT data. The remaining parameters τg and β rest as
fitting parameters that can be evaluated minimizing the sum of
squared differences between the model prediction and the experi-
mental data. Under this perspective Eq. (11) differs substantially from
the original KAHR model that required the optimization of five
parameters [10–14].

A commercially available Poly(methyl-methacrylate) (PMMA)
(Sigma-Aldrich, Mw=120.000) was chosen as the probe material.
The dilatometric study was performed by using a GNOMIX pressure–
volume–temperature (PVT) apparatus. PVT data were obtained in
terms of specific volume change, while the absolute values were
obtained by measuring the absolute value of the specific volume,
using a helium picnometer, at 28 °C and ambient pressure, few
minutes before introducing the sample in the PVT apparatus.

The isobaric PVT data were obtained when cooling the sample
from above to below Tg at 0.5 °C/min, as reported in Fig. 1. The
measurements were performed at seven different pressures, namely
10, 30, 60, 80, 120 and 150 MPa.

Tait's equation [18] is here utilized to fit the data either above or
below the Tg and the results are reported in Fig. 1 as red and green lines,
respectively. The fitting procedure above Tg allows obtaining the
equation of state (EOS) for PMMA, i.e. the equilibrium specific volume
Ve at each temperature and pressure. The isothermal compressibility, ke,
and the isobaric expansion coefficient, αe, are calculated in analytical
form (ke T; Pð Þ = 1

Ve

∂Ve
∂P jT ,αe T; Pð Þ = 1

Ve

∂Ve
∂T jP) fromthe EOS. The isobaric

expansion coefficient in the glassy state, αg T ; Pð Þ, is calculated by
differentiating Tait's expression for the specific volume that fits the data

Fig. 1. Isobaric PVT data (symbols) at seven different pressures, namely 10, 30, 60, 80,
120, and 150 MPa, and at a cooling rate of 0.5 °C/min. The solid lines indicate the fit of
Tait's equation above (red) and below (green) Tg. The intersections between the two
families of curves yield the Tgs.

Fig. 2. Isothermal PVT data (symbols) in the glassy state at five different temperatures,
namely 21, 25, 29, 34, and 39 °C. The solid lines indicate the fit of Tait's equation.
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