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We study the field theoretic renormalized perturbation theory for a toy model of fluctuating nonlinear
hydrodynamics (FNH) of compressible liquids. The toy model contains a density-like and a momentum-like
variable without any spatial dependence. We present a detailed derivation of a set of coupled equations
among correlation and response functions for these variables. In particular, we focus on how the static limit
of the correlation and response functions can be achieved in the renormalized perturbation theory.
Numerical methods of solving these equations at a given order of the loop expansion are explained and the
results for the one-loop theory are given in detail. The simple nature of the toy model enables us to compare
the static limit obtained from the exact solution with that of the one-loop order. This shows explicitly the
range of validity of the one-loop theory in the field theoretic formulation.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Understanding the slow dynamics of supercooled liquids within a
field theoretic framework [1–10] has many advantages including the
possibility of a systematic improvement. However, there have been
more subtle issues than one might first expect in the development of a
consistent renormalized perturbation theory for the dynamics of glass
forming liquids. The nonlinear feedback mechanism of density fluctua-
tions in the so-called fluctuating nonlinear hydrodynamics (FNH) of
compressible fluids was studied by Das and Mazenko (DM) [1] within
the field theoretic renormalized perturbation theory. They find that the
system remains ergodic at all temperatures or densities without a sharp
ergodic-to-nonergodic (ENE) transition predicted in the standardmode
coupling theory (MCT) [11–14]. Recently, another versionoffield theory
for glass forming liquids was developed by Andreanov, Biroli and
Lefèvre (ABL) [4] where the dynamical action is invariant under a set of
linear time-reversal transformations. The field theory by ABL was later
modified for the case of interacting Brownian particles by Kim and
Kawasaki (KK) [7], where the standardMCT result was recovered at the
one-loop order of perturbation theory. This modified method was then
applied to the FNH [10] with results indicating a sharp ENE transition at
the one-loop order with the nonergodicity parameter satisfying the
standard MCT result. In response to these developments, DM reex-
amined their work and showed [15] in a nonperturbative analysis that
the sharp ENE transition is not present in the FNH after all. This
conclusion is also supported by the recent direct numerical integration
of the generalized Langevin equations of the FNH [16].

In Ref. [17], in order to clarify these subtle points in the field
theoretic formulations for glass forming liquids, a simple toy model
for the FNH has been studied. In the toy model, there are no spatial
degrees of freedom in the dynamical field variables which consist
simply of a density-like variable and a single-component momentum-
like variable. The two types of field theories were formulated for the
toy model, namely the original DM-type field theory and the one by
ABL and KK. The simple nature of the toy model enables one to see
directly that a major difference between the two formulations lies in
the way of treating the density nonlinearities present in FNH within
the renormalized perturbation theory [17].

In the original treatment of FNH by DM [1], the density feedback
mechanism was studied via a single equation for the density auto-
correlation function obtained at the one-loop order in the hydrody-
namic limit. For the toy model [17], without resorting to the
hydrodynamic limit, a set of coupled self-consistent equations among
all the independent correlation and response functions involved was
obtained at the one-loop order and solved numerically. This program of
considering the coupled equations can in principle be generalized for
the field theory of FNHwith full spatial dependences at a given order of
the loop expansion. In order to carry out this program, it will be
necessary tohandle certain technical issuesarising in the construction of
the coupled equations in such a field theory, which involve short-time
singularities appearing in some of the correlation and self-energy
functions. In this paper, we clarify these issues by presenting a detailed
construction of the self-consistent equations obtained inRef. [17] for the
correlation and response functions in the renormalized field theory of
the toy model. In particular, we show how to manage the short-time
singularities mentioned above and how to set up the self-consistent
equations ready for the numerical calculations. We also show that this
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task is closely related to taking static limits of the correlation and
response function, which are determined self-consistently at a given
order of the loop expansion. Since the static limit for the present toy
model can be calculated exactly, by comparingwith the one-loop result,
we will be able to obtain explicitly the range of validity of the one-loop
approximation.

In the next section, we summarize key features of the toy model
introduced in Ref. [17], and its field theoretic formulation according to
the DM prescription. In Section 3, we study the renormalized
perturbation theory using the Schwinger–Dyson equations. We
focus on how the static limit can be taken within this formulation.
In Section 4, we present in detail a set of coupled equations for the
correlation and response functions in the DM field theory at the one-
loop order and their numerical solutions. In the final section, we
summarize our results with discussion.

2. Model

In this section we present the toy model studied in Ref. [17]. It is a
zero-dimensional version of the FNH of compressible fluids developed
by Das and Mazenko [1]. The dynamical variables consist of a time-
dependent density-like variable ρ(t) and a single-component mo-
mentum-like variable g(t) without any spatial degrees of freedom.
The equations of motion for these variables are constructed in Ref.
[17] with respect to the effective free energy F, where the equilibrium
distribution for the system at temperature T is given by exp(−F /T).
The free energy is written as F=FK+FU where FK[ρ,g] is the kinetic
energy and the potential energy part FU[ρ] is assumed to depend only
on ρ. We take the usual form for the kinetic part, and the simple
Gaussian form for the potential energy part:

FK =
g2

2ρ
; FU =

A
2

δρð Þ2; ð1Þ

for some constant A and the fluctuation δρ=ρ−ρ0 and the average
value ρ0. Despite the simple form for FU, the nonlinearity in the form of
1/ρ in FK plays an important role in the following discussion. The
equation of motion for the variable ρ(t) is in the form of a zero-
dimensional version of the continuity equation, namely

ρ̇ tð Þ + Jg tð Þ = 0 ð2Þ

for some constant J, where the dot indicates the time derivative. The
equation of motion for g(t) has the dissipative part described by the
coefficient Γ in addition to the reversible part as follows:

ġ tð Þ + J
g2

2ρ

 !
− JAρ δρð Þ + T J + Γ

g
ρ

� �
= θ; ð3Þ

where the Gaussian white noise θ has the variance 〈θ tð Þθ t′
� �

〉 =
2ΓTδ t−t′

� �
.

In this paper we study this toy model using the renormalized field
theory. The field theory for this purpose can be obtained by using the
standardMartin–Siggia–Rose (MSR) procedure [18], where the hatted
fields ρ̂ and ĝ are introduced to enforce the equations of motion for ρ
and g respectively. Following DM [1], we introduce an auxiliary
velocity-like field V(t) such that the condition g(t)=ρ(t)V(t) is
enforced through a delta-function

1 = ∫DV tð Þδ ρ tð ÞV tð Þ−g tð Þð Þ

= ∫DV tð Þ∫D ̂V tð Þ exp −i ̂V tð Þ g tð Þ−ρ tð ÞV tð Þð Þ
h i

:

ð4Þ

The first equality holds up to a Jacobian. This Jacobian was shown
in Ref. [19] to have no effect on the correlation and response functions
and will be neglected in the following analysis. Using this identity, we

obtain the generating functional Z as a functional integral over the
fields ψi(t)=δρ(t),g(t),V(t) and ψ̂i(t)=ρ̂(t),ĝ(t),V̂(t). We can write

Z = ∫∏
i
DψiDψ̂i exp −S ψ; ψ̂

h i� �
; ð5Þ

where

S = ∫dt½ΓT ̂g2 tð Þ + iρ̂ tð Þ ρ̇ tð Þ + Jg tð Þf g

+ i ̂g tð Þf ġ tð Þ−JAρ0δρ tð Þ + ΓV tð Þ + TJ

+
Jρ0
2

V tð Þð Þ2 +
J
2
δρ tð Þ V tð Þð Þ2−JA δρ tð Þð Þ2g

+ i ̂V tð Þ g tð Þ−ρ0V tð Þ−δρ tð ÞV tð Þf g�:

ð6Þ

We useΨ(t) to represent any one of the six variables {ψi, ψ̂i} in our
model, and denote the two-point correlation function between
arbitrary two variables Ψ(t) and Ψ′(t′) by

GΨΨ′ t−t′ð Þ = 〈Ψ tð ÞΨ′ t′ð Þ〉: ð7Þ

(For the subscripts, we will use ρ instead of δρ for simplicity.) Note
that among the correlation functions those between two hatted
variables vanish due to causality, that is Gψ̂iψ̂j

=0. It follows that iT Jĝ(t)
term in the action Eq. (6) has no effect on the correlation functions
and will be neglected in the following. The causality also requires that
Gψiψ̂j

(t)=0 for tb0.
There are some nonperturbative relations among the correlation

functions which will be useful in later discussion. We have

Ġρψ tð Þ + JGgψ tð Þ = 0; ð8Þ

and

Ġρψ̂ tð Þ + JGgψ̂ tð Þ = −iδψ̂ ̂ρδ tð Þ: ð9Þ

There exist fluctuation–dissipation relations (FDR) that relate
linearly the correlation functions to response functions. Assuming the
time-reversal properties of the fields as ρ(− t)=ρ(t), g(− t)=−g(t)
and V(− t)=−V(t), we can derive the FDR for ψ=ρ,g and V as

Gψ ̂g tð Þ = − i
T
Θ tð ÞGψV tð Þ; ð10Þ

where Θ(t)=1 for tN0 and vanishes for tb0. The detailed derivation
of the nonperturbative relations and the FDR closely follows the one
given in Ref. [1]. Since ψ̂i is a real field, we can show that the
correlation function between unhatted and hatted variables is a pure
imaginary number, that is

GT
ψiψ̂j

tð Þ = −Gψiψ̂j
tð Þ: ð11Þ

From the time-reversal properties of the variables, it also follows
that

Gρg −tð Þ = −Gρg tð Þ = Ggρ tð Þ; ð12Þ

GρV −tð Þ = −GρV tð Þ = GVρ tð Þ; ð13Þ

GgV −tð Þ = GgV tð Þ = GVg tð Þ: ð14Þ

3. Renormalized perturbation theory

In this section, we develop a self-consistent renormalized
perturbation theory for the field theoretic approach introduced in
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