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An overview is given on the present status of the theoretical description of vibrational spectra of glasses, as
seen by inelastic neutron, X-ray and light (Raman) scattering. Using the language of Green's/response
functions the merits and shortcomings of a local oscillator and a generalized elasticity-theory point of view
are discussed. It is pointed out that in both cases the interaction of phonons with disorder-induced
irregularities leads to Rayleigh scattering (mean free path ℓ ∝ ω−4) at low enough frequencies and
temperatures. In disordered solids at ambient temperature the Rayleigh scattering is usually masqued by
Akhiezer-like anharmonic scattering ℓ ∝ ω−2, but it can be made visible by lowering the temperature. Using
a combination of fluctuating-elasticity theory with an incoherent spectrum of local oscillators a fair
description of the vibrational spectrum of glassy SiO2 can be achieved.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Since the appearance of the seminal paper of Uli Buchenau et al. [1]
on neutron scattering from glassy SiO2 a wealth of publications on the
rather anomalous vibrational properties of glasses has been published
[2–9]. But, in fact, this discussion started already some 50 years ago
[10] with the observation of a low-frequency Raman band that is not
present in crystalline Raman spectra and which has been called
“boson peak” [11,12]. According to a suggestion of Shuker and
Gammon [13] these spectra were assumed to be proportional to the
vibrational density of states (DOS), so the excess over the Debye DOS,
observed in SiO2 [1] and many other glasses [4–8] inherited also the
name “boson peak” [14]. Among the vibrational anomalies observed
in disordered solids as compared to crystals this feature is the most
striking one. It also shows up as a characteristic peak in the
temperature-dependent specific heat, plotted as C(T)/T3. Near this
peak the thermal conductivity κ(t) shows a characteristic shoulder or
“dip”, which can be shown [15] to be intimately related to the boson
peak. Below the “boson peak temperature” (mostly ~10 K) C(T) varies
almost linearly with T and κ(T) almost quadratically, which can be
explained by the two-level model [2].

The boson peak shows up in a frequency range where the
broadening of the acoustic excitations becomes of the same order of
magnitude of the Brillouin resonance frequency (“Ioffe-regel limit”
[16,17]). This observation led different authors to hypothesize a

relationship between the appearance of the boson peak and the
existence of localized vibrations [18,19]. Acoustic waves that become
Anderson-localized, it was argued, could produce the plateau in the
thermal conductivity. Following this idea, investigations of (Ander-
son) localization properties of waves in disordered systems based on
simulations [20], model calculations [21,22] and field-theoretical
techniques [23] have shown that Anderson-localized states in
disordered media do actually occur, but in a much higher frequency
range (near the upper band edge) than the boson peak frequency.

So the question is: what is the very nature of the states near and
above the boson peak frequency? As these states are neither really
propagating nor localized, Fabian et al. [24] suggested to call them
“diffusons”: They behave like diffusing light in milky glass. In this
regime, however, the Brillouin resonance frequency Ωk as measured
by inelastic X-ray scattering still exhibits a linear dispersion Ωk=vLk
with the wave number k. In this frequency range the width Γk of the
excitations appears to acquire a k2 dependence [25]. As in this regime
the “would-be” mean-free path ℓ=2vL /Γk is of the same order of
magnitude as the wavelength of the sound-like vibrational excitations
the wave vector loses its property of labeling the vibrational mode. In
quantum theory (we are discussing classical vibrational excitations)
one would say, k is no more a good quantum number. Also
perturbation theory with respect to (kℓ)−1 breaks down, and one
has to find a non-perturbative description of the observed spectra.
Such a description – in terms of elasticity theory with fluctuating
elastic constants – is nowadays available [12,15,22,26–29] (fluctuat-
ing-elasticity concept, FE), and we shall give an overview in the next
sections and compare it with the soft-potential/local oscillator (LO)
model.
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Beforehand we briefly summarize the previous efforts to under-
stand or explain the boson-peak anomaly. In fact, an enormous
number of possible explanations have been published in the literature
[4], which can roughly be grouped into three classes: i) Models with
spatially fluctuating elastic constants. ii) Models associated with the
glass transition and iii) defect models.

i) In models with quenched disorder of elastic constants
[15,22,26–34] the boson peak marks the lower frequency
bound of a band of irregular delocalized states with random
mutual hybridization. These states are neither propagating nor
localized [22]. The models have been solved with the help of
numerical simulations as well as effective-medium theories.

ii) In theories of the glass transition [35–39] the boson peak arises
as a benchmark of the frozen glassy state.

iii) Defects with a heavy mass can produce resonant quasi-local
resonant states within the DOS [40–42] and be thus the reason
for the boson peak and the reduction of the thermal
conductivity. Similarly defects with very small elastic con-
stants, near which anharmonic interactions are important (soft
potentials), can produce quasi-local states, which, if hybridized
with acoustic excitations may produce a boson peak [8,43] and
a plateau in the thermal conductivity [44,45]. Inhomongene-
ities may also be the source of local vibrational excitations that
contribute to the excess DOS [46]. Specifically in network
glasses bond-angle distortions can also contribute to the
boson-peak anomaly [1,7]. All these models essentially assume
that the boson peak arises from the coupling of sound waves to
local oscillators. In a recent study [26] the predictions of a LO
model has been compared with those of a FE model [15,26–29].
This will also be done in the present contribution.

2. Rayleigh scattering, fluctuating elastic constants and
local oscillators

Before we go into the details of the FE and LO theory we introduce
some general concepts, which are helpful for discussing the matter.

We start with a simple wave model, in which waves are described
by a scalar amplitude u(r, t), which is supposed to obey a wave
equation:

∂2

∂t2
u r; tð Þ = K0∇

2u r; tð Þ ð1Þ

Here K0=v0
2 is an elastic constant, divided by the mass density and

v0 is the sound velocity. In frequency space we have:

−ω2u r;ωð Þ = K0∇
2u r;ωð Þ ð2Þ

The Green's function obeys:

−ω2G0 r; r′;ω
� �

−K0∇
2G0 r; r′;ω

� �
= δ r−r′

� � ð3Þ

Here ω must contain an infinitesimal imaginary part for mathe-
matical reasons [40]. As is well known the Green's function is very
helpful for describing the presence of inhomogeneities (in the
physical and mathematical sense).

The first inhomogeneity one can study is a spatial variation of the
elastic constant:

K rð Þ = K0 + ΔK rð Þ; ð4Þ

which leads to an equation of motion:

−ω2G r; r′;ω
� �

−∇ K0 + ΔK rð Þð Þ∇G r; r′;ω
� �

= δ r−r′
� � ð5Þ

or in k space [47]:

−ω2 + K0k
2

� �
|{z}

G−1
0 k;ωð Þ

G k;k′;ω
� �

δk;k′ = δk;k′−∑
q

k⋅qΔK k−qð ÞG q;k′ω
� � ð6Þ

As the macroscopic (averaged) Green's function depends only on
the difference of r and r′ we perform the Fourier transform [47] with
respect to this difference and write:

G k;ωð Þ = 〈G k;k′;ω
� �

〉δk;k′ =
1

−ω2 + K0k
2−Σ k;ωð Þ ð7Þ

Here Σ(k,ω) is an unknown function, which describes in an
average way the influence of the disorder.One can define a complex,
frequency-dependent sound velocity, in analogy to optics:

v2 ωð Þ = v20− lim
k→0

Σ k;ωð Þ= k2≡v20−Σ ωð Þ ð8Þ

where we have defined a q independent low-wave vector self energy
Σ(ω). The real part of the complex sound velocity is the “real”
(disorder-modified) sound velocity, the imaginary part gives rise to a
finite mean-free path ℓ(ω):

v″ ωð Þ = 1
2ω

jv ωð Þ j2
ℓ ωð Þ ð9Þ

from which follows:

1
ℓ ωð Þ =

ω
v3

Σ″ ωð Þ ð10Þ

We now solve Eq. (7) for Σ(k,ω) and expand the resulting
expression to second order in ΔK to obtain:

Σ k;ωð Þ = ∑
q

k·qð Þ2C k−qð ÞG0 k;qð Þ ð11Þ

Where:

C qð Þ = 1
V
d3reiqr〈ΔK r + r0ð ÞΔK r0ð Þ〉 ð12Þ

is the Fourier transform of the spatial correlation function of the
fluctuating elastic constant. In deriving Eq. (11) we have used the fact
that the average of ΔK is zero.

In the low-wave number limit we have for the correlation
function:

C q→0ð Þ = 〈ΔK2
〉
ξ3

V
ð13Þ

and we obtain:

∑ k;wð Þ = k2
ξ3

3
〈ΔK2

〉
1

2πð Þ3 ∫d
3q

q2

−w2 + v20q
2 ð14Þ

we now use the identity:

Im
1

q2−ω2 = v20

( )
= πδ q2−ω2

= v20
� �

= v0
π
2ω

δ q−ω= v0ð Þ ð15Þ

to obtain:

1
ℓ ωð Þ =

ω
v3

Σ″ ωð Þ = ξ3

3π
bΔK2

N

v80
ω4 ð16Þ
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