Contents lists available at ScienceDirect

Journal of Non-Crystalline Solids

journal homepage: www.elsevier.com/ locate/ jnoncrysol

Preparation and characterization of lithium ion conducting Li₂S–P₂S₅–GeS₂ glasses and glass-ceramics

Keiichi Minami, Akitoshi Hayashi, Masahiro Tatsumisago*

Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuencho, Naka-ku, Sakai, Osaka 599-8531, Japan

A R T I C L E I N F O

ABSTRACT

Article history: Received 15 October 2009 Received in revised form 30 March 2010 Available online 4 June 2010

Keywords: Solid electrolyte; Glass-ceramic; Lithium ion conductivity; Mechanochemistry Glasses and glass-ceramics in the system $Li_2S-P_2S_5-GeS_2$ with the following three compositions of $Li_7 + _xP_{3-x}Ge_xS_{11}$, $Li_7P_{3-y}Ge_yS_{11-y/2}$, and $(100 - z)(70Li_2S \cdot 30P_2S_5) \cdot zGeS_2$, were prepared by using a mechanical milling technique. At the compositions of $Li_7 + _xP_{3-x}Ge_xS_{11}$ and $Li_7P_{3-y}Ge_yS_{11-y/2}$, conductivity decreased monotonically with an increase in *x* or *y*. The conductivity decrease was due to the increase of lithium ion concentration around ortho thio-phosphate which led to the precipitation of the $Li_{32}P_{0.96}S_4$ crystal. At the composition of (100 - z) (70Li_2S \cdot 30P_2S_5) \cdot zGeS_2, conductivity was enhanced with an increase in *z* (up to *z* = 2), and the glass-ceramic with 2 mol% of GeS_2 showed the highest conductivity of $5.4 \pm 0.1 \times 10^{-3}$ S cm⁻¹ at room temperature. From the XRD pattern, germanium would not be incorporated into the $Li_7P_3S_{11}$ crystal.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

High lithium ion conducting solid electrolytes are strongly desired for the application of all-solid-state lithium secondary battery. Many kinds of solid electrolytes were developed so far [1–3]. Sulfide based solid electrolytes have been attracted much attention because of their high conductivity and wide electrochemical window. A superionic crystal is occasionally formed by heat treatment of glass electrolytes and it shows higher conductivity than the mother glasses. Therefore the development of superionic crystal is important for improving cell performance of all-solid-state battery. The superionic Li₇P₃S₁₁ crystal was prepared by crystallization of the 70Li₂S 30P₂S₅ (mol%) glass [4,5]. The crystallized glass, which is so-called glass-ceramic, showed high conductivity of 3.2×10^{-3} S cm⁻¹ at room temperature [4]. The Li₇P₃S₁₁ crystal has not been obtained by conventional solid state reaction and the crystal was only precipitated by crystallization from the glass. The $Li_7P_3S_{11}$ crystal consists of $P_2S_7^{4-}$ unit and PS_4^{3-} unit. Yamane et al. analyzed the Li₇P₃S₁₁ crystal structure by using synchrotron X-ray diffraction and Rietvelt analysis [6]. The Li₇P₃S₁₁ phase crystallized in a triclinic cell, space group P-1, a = 12.5009(3)Å, b = 6.03160(17)Å, c = 12.5303(3)Å, $\alpha = 102.845(3)^{\circ}$, $\beta = 113.2024(18)^\circ$, $\gamma = 74.467(3)^\circ$.

Conductivity of glass-ceramic depends on the conductivity of precipitated crystal and its crystallinity. Therefore the precipitation of

E-mail address: tatsu@chem.osakafu-u.ac.jp (M. Tatsumisago).

superionic crystal in the glass-ceramic with high crystallinity is important to enhance the conductivity. In order to increase conductivity of the Li₇P₃S₁₁ crystal, we have focused on the element substitution in the Li₇P₃S₁₁ crystal. Kanno et al. reported that conductivity of the Li₃PS₄ crystal was largely increased by substituting small amount of third component such as SiS₂ and GeS₂ for P₂S₅. These solid solutions are called thio-LISICONs [7–9]. In many thio-LISICONs, the $Li_{3,25}P_{0.75}Ge_{0.25}S_4$ crystal, which was substituted GeS₂ for P₂S₅, showed the highest conductivity of $2.2 \times 10^{-3} \,\text{S}\,\text{cm}^{-1}$ at room temperature. Enhancement of the conductivity was due to the formation of superionic crystal (thio-LISICON region II crystal). The Li₃PS₄ crystal shows low conductivity of about 10^{-8} S cm⁻¹ at room temperature. Conductivity of the Li₃PS₄ crystal was enhanced more than 5 orders of magnitude by incorporating germanium into the Li₃PS₄ crystal. On the other hand, the Li₇P₃S₁₁ glass-ceramic shows high conductivity of 3.2×10^{-3} S cm⁻¹. It is expected that further enhancement of the conductivity would be achieved by incorporating germanium into the Li₇P₃S₁₁ crystal.

In this study, preparation of the germanium-incorporated Li₇P₃S₁₁ crystal was conducted by crystallization of the Li₂S–P₂S₅–GeS₂ glasses. Three types of incorporations on Lines A, B, and C as shown in Fig. 1 were studied. The Line A, Li_{7+x}P_{3-x}Ge_xS₁₁, was normal substitution route (substitution of Ge⁴⁺ and Li⁺ for P⁵⁺). This incorporation route is the same as that of the thio-LISICON crystal. In addition to the Line A, other incorporation routes of Line B and C were investigated. The lithium ion concentration was fixed in the Line B, Li₇P_{3-y}Ge_yS_{11-y/2}. The ratio of lithium to phosphorus was fixed in the Line C, (100 – z) (70Li₂S·30P₂S₅)·zGeS₂. Effects of the germanium incorporation on the structure and conductivity of the 70Li₂S·30P₂S₅ (Li₇P₃S₁₁) glasses and glass-ceramics were investigated.

^{*} Corresponding author. 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan. Tel./fax: +81 72 254 9331.

^{0022-3093/\$ -} see front matter © 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.jnoncrysol.2010.05.016

Fig. 1. Target compositions of the Li₂S-P₂S₅-Ge₂S₄ system. Compositions of Line A, B, and C are Li_{7+x}P_{3-x}Ge_xS₁₁, Li₇P_{3-y}Ge_yS_{11-y/2}, and $(100-z)(0.7Li_2S \cdot 0.3P_2S_5) \cdot zGeS_2$, respectively.

2. Experimental

The GeS₂ substituted glasses were prepared by the mechanical milling method. Reagent-grade Li₂S (Idemitsu Kosan, 99.9%), P_2S_5 (Aldrich, 99%), and GeS₂ (Fruuchi Chem., 99.999%) powders were used as starting materials. The mixture of these materials was mechanically milled at ambient temperature by a planetary ball mill apparatus (Fritsch Pulverisette 7) using zirconia pot (volume of 45 ml) with 500 zirconia balls (4 mm in diameter). A rotating speed was 510 rpm and the milling time was from 8 to 15 h. The glass-ceramics at all the compositions were prepared by heating the pellets of the obtained glassy powders at 290 °C for 1 h. All the processes were performed in a dry Ar atmosphere.

Raman spectra of the glasses were measured with a Raman spectrophotometer (Jasco NR-1000) using the 514 nm Line of an Ar⁺ laser beam. Differential scanning calorimetry (DSC) was performed by using a thermal analyzer (SII, DSC 6200). The heating rate was 10 °C min⁻¹. XRD measurements (CuK_{α}) were conducted using a

diffractometer (Bruker AXS, M18XHF²²-SRA). Ionic conductivities were measured for the pelletized samples with 10 mm in diameter and about 1.5 mm in thickness. Carbon paste was applied as electrodes on the both faces of the pellets. Two stainless steel disks coupled with gold wires were attached to the pellets as a current collector. The obtained 2-probe cell was packed in a glass tube and then the tube was sealed with a silicone plug equipped with needle valves, platinum electrodes and a thermocouple. Ac impedance measurements were carried out for the cell using dry Ar gas flow by an impedance analyzer (Solartron, 1260) in the frequency range of 10 Hz to 8 MHz. The temperature range of the measurements was from 25 °C to above the first crystallization temperature of glass samples.

3. Results and discussion

Amorphous samples were obtained by milling at all the compositions studied in this paper. Fig. 2 shows the Raman spectra of the GeS₂substituted glasses at the compositions: (a) Line A, $Li_{7+x}P_{3-x}Ge_xS_{11}$, (b) Line B, $\text{Li}_{7}P_{3-y}\text{Ge}_{y}\text{S}_{11-y/2}$, and (c) Line C, $(100-z)(0.7\text{Li}_{2}\text{S}\cdot 0.3P_{2})$ S₅) zGeS₂. The 70Li₂S 30P₂S₅ (mol%) (x, y, z = 0) glass consists of P₂S₇^{4–} (407 cm⁻¹) and PS₄^{3–} (420 cm⁻¹) units [10]. At the composition Li₇₊ $_{x}P_{3-x}Ge_{x}S_{11}$ (Line A), the peak intensity of the PS₄³⁻ unit remains and the peak intensity of the $P_2S_7^{4-}$ unit decreases with increasing germanium content x. Four peaks at 340, 385, 415, and 454 cm^{-1} are observed for the spectra of obtained glasses with large amount of germanium. The peak at 340 cm⁻¹ is assigned to the Ge–S–Ge unit with bridging sulfur. The other three peaks at 385, 415, and 454 cm⁻¹ are respectively assigned to the $(GeS_{1/2}S_3)^{3-}$, $(GeS_{2/2}S_2)^{2-}$, and $(GeS_{3/2}S)^{-}$ unit with non-bridging sulfur [11]. These phenomena indicate that the isolated PS_4^{3-} unit is preferentially formed in the glass instead of the $P_2S_7^4$ unit by substitution of GeS₂ for P₂S₅. On the other hand, germanium units with network structure such as $(\text{GeS}_{1/2}S_3)^{3-}$ are formed by GeS_2 substitution. At the composition $Li_7P_3 - vGe_vS_{11} - v/2$ (Line B), the peak intensity of the $P_2S_7^{4-}$ unit decreases with increasing germanium content y. The change of local structure in Line B is similar to that of the Line A. It is clarified from the spectra in Lines A and B that the substitution of germanium for phosphorus leads to the formation of the phosphorus unit PS_4^{3-} with high lithium ion concentration and germanium units with low lithium ion concentration. We reported that the glass forming reaction was deeply related with the acidity of glass former, and the phosphate component showed higher acidity than the borate and silicate components [12]. It is speculated that the P₂S₅ component is stronger acid

Fig. 2. Raman spectra of the GeS₂-substituted glasses at the compositions of (a) Line A, $Li_{7+x}P_{3-x}Ge_xS_{11}$, (b) Line B, $Li_7P_{3-y}Ge_yS_{11-y/2}$, and (c) Line C, (100-z) (0.7Li_2S \cdot 0.3P_2S_5) \cdot zGeS_2.

Download English Version:

https://daneshyari.com/en/article/1482809

Download Persian Version:

https://daneshyari.com/article/1482809

Daneshyari.com