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Abstract

Photochromic behavior of Li-doped MoO3 sol–gels prepared by the peroxo sol–gel method was studied in details using various exper-
imental techniques, including UV–vis, XRD, Raman, EPR, and XPS. The lithium doping has drastically enhanced the stability of the
MoO3 sol–gels. Upon UV-light irradiation from a high-pressure mercury lamp, the Li-doped MoO3 sol turned from yellowish into deep
blue, and the sol in ethanol exhibited much more intense color change than the sol in water. The UV-light exposure has the effect of re-
arranging the structural units of MoO3 and building up short-range order inside the solid. The formation of a blue colored bronze in the
photo-irradiated sols because of the reduction of Mo6+ to Mo5+ is also evidenced by the experimental data. Based on these data, a mech-
anism for the photochromic behavior is proposed.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Recently, transition-metal oxides such as WO3 and
MoO3 are attracting much attention as electrochromic
and photochromic materials due to their high optical con-
trast and reversible color change. Thin films of MoO3 are
considered as advantageous to be used in displays, reflec-
tive mirrors and smart windows, etc. since they are more
akin to the sensitivity of human eyes, have a better open-
circuit memory, and possess a ‘grey color’. MoO3 thin films
have been prepared by various techniques, such as evapo-
ration, chemical vapor deposition, electrodeposition, sput-
tering, and sol–gel [1,2]. Among them, the sol–gel process is
attractive due to its easy control over compositions, low
cost, and easy handling.

However, a significant drawback of MoO3 to be used as
electrochromic or photochromic materials lies in its struc-
tural instability and consequently poor reversibility of color-

ation [3]. Crystals of MoO3 belong to the AMO3 perovskites
with vacant A sites [4]. Li+ ions, if introduced as a dopant to
MoO3, may enter into the empty A sites and function as an
structure-stabilizing agent for MoO3. Meanwhile, the intro-
duction of Li ions will not create new energy levels in the
band diagram of MoO3, and thus will not affect adversely
the optical absorption properties of the solid. In a previous
paper [5], we reported that Li-doping can significantly
improve the stability of MoO3 sol–gels and consequently
the electrochromic performance of MoO3 thin films. As
shown by Yao et al. [6], electrolytically pre-treated MoO3

thin films, which contain residual Li ions, exhibit partially
reversible visible-light induced photochromism. Thus, in this
work we were motivated to investigate the photochromic
properties of Li-doped MoO3 sol–gels and the related mech-
anism of photo-coloration.

2. Experimental

The Li-doped MoO3 sol–gels were prepared using the
peroxo sol–gel method [7]. Metallic molybdenum powder
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was dissolved in an aqueous solution of H2O2 (30 wt%). To
this solution, lithium hydroxide monohydrate (LiO-
H Æ H2O) was added slowly under stirring at room temper-
ature according to a Li/Mo molar ratio of 1/10, and a
stable yellow solution was obtained. This solution can
transform into a yellow gel upon the decomposition of
the excessive H2O2 and the partial evaporation of the water
solvent after stirring for a long time. To expedite the pro-
cess, in this work the yellow solution was dried at 40 �C
in an oven for 24 h to form a xerogel powder. The Li con-
tent in the powder was determined by ICP to be 10.0 at.%,
indicating that all the added lithium is retained in the prod-
uct. Excessive H2O2 in the powder was not detectable using
KMnO4 titrimetric analysis. The xerogel powder holds 1.97
H2O per MoO3 according to the thermogravimetric analy-
sis. For simplicity, the compositions of the Li-doped MoO3

sols and gels will be denoted below as Li0.1MoOx.
The above-described xerogel powder can be readily re-

dispersed in water or ethanol, forming stable yellowish sols.
The pH of the sol in water was measured as to be 3–4 using
a strip of pH-testing paper, while that of the sol in ethanol
was not measurable using the same method. To investigate
the photochromic behavior of the sols, 1.0 g of the xerogel
powder was dissolved in 5 mL of deionized water contained
in a quartz tube, and irradiated using a 500 W high-pres-
sure Hg lamp (no light filter is used; intensity: 40 mW/
cm2) for approximately 100 h. And 1.0 g of the powder
was dissolved in ethanol, and irradiated for 8 h using the
same Hg lamp. After the irradiation, both the sols in water
and in ethanol were dried in an oven at 60 �C for 10 h to
form xerogel powders for further analysis. Note that all
the experiments in this work were operated in air.

Several techniques were used to characterize the Li-
doped MoO3 sol–gels, including UV–visible absorption
spectroscopy, powder X-ray diffraction (XRD), Raman
microprobe spectroscopy, electron paramagnetic resonance
(EPR), and X-ray photoelectron spectroscopy (XPS).

UV–vis absorption spectra were recorded with a Shimadzu
UV1601 spectrophotometer. XRD experiments were per-
formed on a D/max-rB X-ray diffractometer with Cu Ka

radiation. Raman spectra were obtained using a LABRAM
Raman microscope spectrometer. The excitation wave-
length was 632.8 nm, supplied by a He–Ne laser. To pre-
vent possible laser-induced phase transformation or
damage of the samples, a low power level of 1.5 mW was
used in the measurements [8].

EPR spectra were measured on a BRUKER ER2000-
SRC spectrometer at the frequency of 9.55 GHz with a
homodyne system using 2.5 KHz modulation of the mag-
netic field. The center magnetite was 3500 G, the scan
length was 1000 G, and the microwave power was
20 mW. The sample powders were held in a quartz cylinder
of 3 mm in diameter. The g factor was calibrated by refer-
ence to a powder of 1,1-di-phenyl-2-picrylhydrazyl (DPPH,
g = 2.0037 ± 0.0002).

XPS spectra were measured with a MICRO LAB MK II
surface analyzer using Mg Ka as the exciting resource. The

background pressure of the system was less than 10�8 Torr,
and all binding energies were corrected using C1s peak at
284.6 eV as the reference. XPS peaks were fitted using
Gaussian-like curves and the binding energy values of
peaks were given with an accuracy of ±0.1 eV.

3. Results and discussion

3.1. UV–vis absorption spectra

The Li0.1MoOx xerogel powder and the sols obtained by
re-dispersing the powder into water or ethanol look yellow-
ish. This color indicates the existence of some residual Mo-
peroxide complexes. As shown in Fig. 1(a), the sol in water
exhibits an absorption edge starting from �480 nm, but
has no absorption in the longer wavelength range. Upon
irradiation with UV-light, the sols in water and in ethanol
build up strong and broad absorption in the visible and
NIR regions, with a peak appearing at 720 nm (Fig. 1(b)
and (c)). However, the photo-coloration rate for the sol
in ethanol is much higher than the sol in water since 8 h
of irradiation of the sol in ethanol has created higher
absorption at the peak wavelength of 720 nm than 100 h
of irradiation of the sol in water. This might be explained
as follows. Ethanol is a stronger electron donor than water,
and the ethanol solvent can create a reducing environment
for the formed bronze to prevent it from being re-oxidized
by the oxygen in air.

3.2. XRD patterns

The as-dried Li0.1MoOx xerogel powder is amorphous,
as shown by the X-ray diffraction data in Fig. 1(a). Upon
annealing at 400 �C for 2 h, it becomes polycrystalline with
well-developed diffraction peaks that can be indexed
according to the orthorhombic phase (JCPDS card No.
12-517) (Fig. 1(b)). The xerogel powder obtained from
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Fig. 1. UV–visible absorption spectra of the Li0.1MoOx sol in water
before (a) and after (b) 100 h of UV-irradiation, and the Li0.1MoOx sol in
ethanol after 8 h of UV-irradiation (c).
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