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It is shown that for substances with positive thermal expansion and positive compressibility, and for
substances with negative thermal expansion and negative compressibility, δQ=dU+PdV, but for substances
with positive thermal expansion and negative compressibility, and for substances with negative thermal
expansion and positive compressibility, δQ=dU−PdV. The result obtained helps to calculate processes
which do not obey traditional thermodynamics.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

According to thermodynamics [1],

∂S
∂V

� �
T
=

α
β
: ð1Þ

Here, S is the entropy, V is the volume, α is the thermal expansion
coefficient, T is the temperature and β is the isothermal com-

pressibility − 1
V

∂V
∂P

� �
T
where P is pressure. One can easily obtain this

result:

α =
1
V

∂V
∂T

� �
P
= − 1

V
∂V
∂P

� �
T

∂P
∂T

� �
V
= β

∂S
∂V

� �
T
: ð2Þ

From Eq. (1), when αb0, ∂S
∂V

� �
T
b0.

On the other hand,

δQ ≤ TdS = dU + PdV ð3Þ

and

∂S
∂V

� �
U
=

P
T

N 0: ð4Þ

for all α

However, ∂U
∂T

� �
X
≠0, and generally ∂U

∂X

� �
T
≠0 and

dU
dT

= ∂U
∂T

� �
X
+

∂U
∂X

� �
T

dX
dT

≠0 where X=P, V, S, H, F and G [1], H is the enthalpy, F is the

Helmholtz free energy and G is the Gibbs free energy. Therefore, almost
always, when U is constant then T is constant (as will be proven in detail
below).When U is constant and T is constant then the right hand sides of
Eqs. (1) and (4)must have the samesign. So, there is a contradiction in the
thermodynamic equations. One has to pay attention that in a heat
exchange, one introduces thequantity of heat δQ into the substance, andU
and T vary. For this case, when U changes then T changes, and vice versa,
thus when U is a constant then T is a constant, and vice versa. For some

processes, of course, ∂U
∂V

� �
T
and ∂T

∂V

� �
U
are not equal to zero.

2. Theory

According to [1], ∂U
∂T

� �
V
= CV ,

∂U
∂T

� �
P
= CP−αPV ; ð5Þ

∂U
∂T

� �
S
=

CVβP
αT

; ð6Þ

∂U
∂T

� �
H
=

CP−αPV−CVβP
1−αT

; ð7Þ

∂U
∂T

� �
F
=

βSP−αTS + CVβP
βP

; ð8Þ
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∂U
∂T

� �
G
= CP−αPV− αT−βPð ÞS ð9Þ

and

∂U
∂V

� �
T
=

αT−βP
β

; ð10Þ

∂U
∂P

� �
T
= βP−αTð ÞV ; ð11Þ

∂U
∂S

� �
T
=

αT−βP
α

; ð12Þ

∂U
∂H

� �
T
=

αT−βP
αT−1

; ð13Þ

∂U
∂F

� �
T
=

βP−αT
βP

; ð14Þ

∂U
∂G

� �
T
= βP−αT : ð15Þ

So, in general dU
dT

= ∂U
∂T

� �
X
+ ∂U

∂X

� �
T

dX
dT

is not equal to 0. One can

prove that for almost all processes, dU
dT
≠0, thus when U is constant

then T is constant and the contradiction does exist.
Let us find out what happens when U is constant but T is not

constant [1]:

dU =
∂U
∂T

� �
V
dT +

∂U
∂V

� �
T
dV = CVdT +

αT−βP
β

dV : ð16Þ

From this, if
dU
dT

= 0, then

1
V
dV
dT

= − βCV

βP−αTð ÞV : ð17Þ

For every process which does not satisfy Eq. (17),
dU
dT

≠0 and when U
is constant then T is also constant.

Forwater at273 Kandatmosphericpressure,α=−68.05·10−6 K−1,
CP=4217.6 J/(kgK), CP−CV≈2.5 J/(kgK) and β=5.09·10−10 Pa−1 [2].

Substituting thesevalues intoEq. (17), onegets
1
V
dV
dT

=
βCV

αTV
∼−0.1 K−1

with the highest accuracy. At a constant pressure,
1
V
dV
dT

=

α≈−7·10−5 K−1, thus Eq. (17) is not true for water at a con-
stant pressure. And, in general, for all processes with constant U

and
1
V
dV
dT

≠−0:1K�1, T is also constant.

From Eqs. (5) and (11) one can find that, when
dU
dT

= 0, then

dP
dT

=
CP−αPV
αT−βPð ÞV : ð18Þ

For water, with the highest accuracy,
dP
dT

=
CP

αTV
∼−108 Pa/K. For

a constant pressure, dP=0 hence Eq. (18) is wrong. For all processes

with
dP
dT

≠−108Pa=K, when U is constant then T is constant.

Another interesting example: recall that [1]

∂U
∂H

� �
P
=

CP−αPV
CP

: ð19Þ

and

∂U
∂P

� �
H
=

CVβPV− CP−αPVð ÞV
CP

: ð20Þ

For water, with the highest accuracy, ∂U
∂H

� �
P
= 1 and ∂U

∂P

� �
H
= −V .

Therefore, if
dU
dT

= 0, then

dP
dH

=
1
V

= 103 Pa⋅kg
m3 : ð21Þ

For heat exchange at constant pressure, dHN0 but dP=0 thus

Eq. (21) is not true. In general, for all processeswith
dP
dH

≠103 Pa⋅kg/m3,
when U is constant then T is constant.

So, it is proven that for condensed matter in almost all cases, when
U is a constant then T is a constant, and vice versa. This means, that for
these cases

∂S
∂V

� �
T
=

α
β

=
∂S
∂V

� �
U
: ð22Þ

(There is a general relation ∂S
∂V

� �
U
= ∂S

∂V

� �
T
− 1

T
∂U
∂V

� �
T

[1]). Using

Eqs. (3), (4) and (22) one must come to the conclusion that for
cases with αb0,

δQ ≤ TdS = dU–PdV ð23Þ

and

α
β

=
∂S
∂V

� �
U
= − P

T
: ð24Þ

The following consideration supports the conclusion made in this
paper. There is the generalized Mayer's relation [3]:

CP−CV =
Tα2V
β

: ð25Þ

It is derived from the first and second laws of thermodynamics
without simplification. Its derivation is given in the Appendix. If one
derives it assuming that TdS=dU−PdV for αb0, then it looks like [2]:

CP−CV = − Tα2V
β

b 0: ð26Þ

Let us consider the thermal expansion of a solid. In the first
approximation, V is constant. Then, in the first approximation [1],

CP =
∂H
∂T

� �
V
= CV +

αV
β

: ð27Þ

From Eq. (27), for αb0, CPbCV and Eq. (26) is true, not Eq. (25).
In the second approximation, P=const and V≠const. Let us

suppose that in that case CPNCV for αb0. There is Rolle's lemma: If
f(x) is continuous in the interval a≤x≤b, and if f(a)N0 and f(b)b0
then there exists at least one value of x (say x=c) such that f(c)=0,
where abcbb. As heat capacity is a continuous function, from Rolle's
lemma it follows that there exists one value of V [say Vc=V0+ΔV,
V0 is the constant V in Eq. (27)] such that CP(Vc)−CV=0. This is a
contradiction because from Eqs. (25) and (26), at αb0, CP(V)−
CV≠0.

Else, when P=const, for V0−ΔVbVbV0+ΔV and αb0, due to the
continuity of heat capacity, CP–CVb0. This is another contradiction to
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