
On weakly dispersive multiple-trapping transport

W. Tomaszewicz *

Department of Physics of Electronic Phenomena, Gdansk University of Technology, Narutowicza 11/12, 80-952 Gdansk, Pomerania, Poland

a r t i c l e i n f o

Article history:
Available online 15 June 2009

PACS:
72.20.Jv
72.80.Ng

Keyword:
Electrical and electronic properties

a b s t r a c t

Equations for multiple-trapping carrier transport, corresponding to the time-of-flight method are approx-
imately solved under the assumption that the majority of carriers are in a thermal quasi-equilibrium. The
solutions show a Gaussian shape of the carrier packet. The mean velocity of the carrier sheet for the dis-
persive transport regime decreases in time and its dispersion grows faster than the square root of time.
The accuracy of the obtained formulas is verified by Monte Carlo calculations for exponential and Gauss-
ian trap distributions. A satisfactory agreement is obtained up to the effective carrier transit time, pro-
vided that the trap density falls-off sufficiently fast in the energy gap. A new method of determining
energetic trap profiles in disordered solids from the time-of-flight measurements is proposed.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

The time-of-fight (TOF) technique is a straightforward, fre-
quently applied method of investigating the carrier transport in
low-conductivity solids, both crystalline and amorphous. The sam-
ple is sandwiched between two electrodes with a constant voltage
applied, and the excess carriers are generated by a short light
pulse. The carrier motion in the sample induces a current transient
in the measuring circuit. Information about the carrier transport
mechanism can be inferred from the transient form as well as from
its dependence on the experimental parameters.

As regards disordered solids, there exist two basic carrier trans-
port mechanisms – multiple-trapping (MT) and hopping. Transi-
tions of carriers between extended states and localized states
(traps) gap occur in case of MT, whereas straightforward carrier
transitions between localized states take place in case of hopping.
For both mechanisms, the carrier transport may be either Gaussian
or dispersive. The former transport regime is characterized by con-
stant velocity and a Gaussian carrier sheet shape in a solid, the lat-
ter – by a gradual decrease in the mean velocity and an extremely
large dispersion of the carrier packet. The first successful theory of
dispersive transport was developed by Scher and Montroll [1], who
attributed this phenomenon to very slow equilibration of charge
carriers over localized states.

The Scher–Montroll theory initiated extensive investigations on
dispersive transport (see the reviews [2,3] for earlier works). In
spite of this, some problems seem to be still unresolved. In partic-
ular, this concerns the simplified description of MT dispersive

transport, given by Tiedje and Rose [4] and by Orenstein and Kast-
ner [5]. Their main idea was that the majority of trapped carriers
for specific trap distributions are in a thermal quasi-equilibrium
with the free carriers. This approach has been utilized in many sub-
sequent papers. However, its validity has been questioned by Ark-
hipov et al. [6], since it does not describe the carrier packet
broadening. The main aim of this paper is to resolve this
controversy.

2. Transport equations

The present investigations are based on a standard MT model,
assuming very small trap occupancy, electric field uniformity in
the sample as well as negligible carrier diffusion. It should be borne
in mind that the first assumption may be incorrect at the final
stage of the carrier transport, due to the gradual filling of deeper
traps. However, it is difficult to provide an analytical description
of the MT transport taking into account the trap occupancy satura-
tion. Only some special cases have been studied so far [7].

In the following formulas, the free and trapped carrier densities
are denoted by nðz; tÞ and ntðz; tÞ, respectively, where z ¼ x=l0E is
the reduced space variable (x is the space variable, l0 – the free
carrier mobility and E – the electric field strength) and t is the time
variable. The MT carrier transport can be described by the continu-
ity equation:

o

ot
nðz; tÞ þ ntðz; tÞ½ � þ onðz; tÞ

oz
¼ 0; ð1Þ

and the equation relating the free and trapped carrier densities [8]:

nt z; tð Þ ¼
Z t

0
Uðt0Þn z; t � t0ð Þdt0: ð2Þ
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Here, the function UðtÞ determines the probability that the car-
rier is trapped in a time unit and remains in the trap until time t.
This function is given by the formula:

UðtÞ ¼ Ct

Z 1

0
NtðeÞ exp �t=srðeÞ½ �de; ð3Þ

where Ct is the carrier capture coefficient, NtðeÞ is the trap density at
the energy level e per unit energy, and

srðeÞ ¼ m�1
0 exp e=kTð Þ ð4Þ

is the mean lifetime of the trapped carrier (m0 is the frequency fac-
tor, k – the Boltzmann constant and T – the sample temperature).
The energy e is measured from the edge of the allowed band.

The current intensity IðtÞ, registered in the TOF experiment,
equals the conduction current intensity in the sample, averaged
over its thickness. Therefore

IðtÞ ¼ I0

n0s0

Z s0

0
nðz; tÞdz; ð5Þ

where n0 is the density of generated carriers, averaged over sample
thickness, s0 ¼ d=l0E and I0 ¼ en0l0ES are respectively the carrier
time-of-flight and the initial current intensity in a trap-free sample
(with d being the sample thickness, e – the elementary charge and S
– the sample cross-sectional area). For times smaller than the effec-
tive carrier transit time se through the sample, Eq. (5) may be
rewritten as

IðtÞ ¼ I0
d�zðtÞ

dt
; t < se; ð6Þ

where the dash denotes averaging over the spatial carrier distribu-
tion. The transit time se is implicitly given by the formula

�zðseÞ ¼ s0: ð7Þ

3. Thermal quasi-equilibrium approximation

The progress of carrier thermalization in trapping states is char-
acterized by the demarcation level e0ðtÞ [4,5,8], defined implicitly
by the formula sr ½e0ðtÞ� ¼ 1:8t, which gives:

e0ðtÞ ¼ kT lnð1:8m0tÞ: ð8Þ

The level separates the traps approximately with equilibrium
(e < e0ðtÞ) and non-equilibrium (e > e0ðtÞ) occupancy.

In the case of weakly dispersive transport, when the approxi-
mate thermal equilibrium between free carriers and the majority
of the trapped carriers is established, Eq. (2) describing the trap-
ping/detrapping kinetics can be simplified. If the trap density in
the energy gap decreases sufficiently fast, the main contribution
to the integral in Eq. (3) should proceed from the energy region
e < e0ðtÞ. The exponential function argument in the integrand is
then much larger than unity for almost all values of energy e,
and the function UðtÞ should differ significantly from zero only
for very small time values. The free carrier density in Eq. (2) can
be then replaced by the initial terms of its Taylor series,

nðz; t � t0Þ � nðz; tÞ � t0
onðz; tÞ

ot
: ð9Þ

This results in an approximate equation, describing carrier trap-
ping/detrapping processes,

ntðz; tÞ � H�1ðtÞ � 1
h i

nðz; tÞ � ssðtÞ
onðz; tÞ

ot
; ð10Þ

where the functions:

H�1ðtÞ ¼ 1þ Ct

Z 1

0
NtðeÞsrðeÞ 1� exp �t=srðeÞ½ �½ �de; ð11Þ

ssðtÞ ¼ Ct

Z 1

0
NtðeÞs2

r ðeÞ 1� 1þ t=srðeÞ½ � exp �t=srðeÞ½ �f gde: ð12Þ

The last factors in integrands in Eqs. (11) and (12) may be
approximated by the unit step function, H½e0ðtÞ � e�, provided that
the functions NtðeÞsrðeÞ and NtðeÞs2

r ðeÞ vary sufficiently slowly with
energy. Then,

H�1ðtÞ � 1þ Ct

Z e0ðtÞ

0
NtðeÞsrðeÞde; ð13Þ

ssðtÞ � Ct

Z e0ðtÞ

0
NtðeÞs2

r ðeÞde: ð14Þ

It should be stressed that both integrals are calculated over the
energy interval 0 6 e 6 e0ðtÞ, where the trapped carriers are in a
thermal quasi-equilibrium.

Equations equivalent to Eq. (10), with the last term having been
omitted, have been obtained in [4,5] under the assumption of an
exact thermal equilibrium between free carriers and carriers
trapped in the energy region e 6 e0ðtÞ. As has been already indi-
cated, this approach has been criticized [6], as it does not describe
the spatial carrier dispersion. The mentioned term approximately
takes into account the deviations of carrier densities from their
equilibrium values. It will be seen that the presence of the term re-
sults in a finite spread of the carrier packet.

4. Solution of transport equations

An approximate solution of the equations identical to (1) and
(10) has been already obtained in the paper [9], dealing with
non-isothermal carrier transport, and has the form of

nðz; tÞ � n0s0HðtÞ
2 pnðtÞ½ �1=2 exp � z� fðtÞ½ �2

4nðtÞ

( )
; ð15Þ

ntðz; tÞ � H�1ðtÞ � 1
h i

nðz; tÞ; ð16Þ

where the functions

fðtÞ ¼
Z t

0
Hðt0Þdt0; ð17Þ

nðtÞ ¼
Z t

0
ssðt0ÞH3ðt0Þdt0: ð18Þ

Thus, the carrier packet in the considered approximation has a
Gaussian shape. The ‘centroid’ and the RMS spread of carrier distri-
bution are given respectively by the formulas:

�zðtÞ ¼ fðtÞ; ð19Þ
rðtÞ ¼ 2nðtÞ½ �1=2

: ð20Þ

The above results constitute a straightforward extension of
those obtained for the Gaussian carrier transport [10,11]. In such
a case the functions HðtÞ and ssðtÞ are constant which implies that
�zðtÞ / t and rðtÞ / t1=2.

Inserting the free carrier density (15) into the integral (5)
the following formula for the current transient intensity is
obtained:

IðtÞ ¼ I0HðtÞ
2

1þ erf
s0 � fðtÞ
2n1=2ðtÞ

" #( )
; ð21Þ

where erfð. . .Þ is the error function. The initial current decay and the
effective carrier transit time se, corresponding approximately to the
transition to faster final current decay are given by

IðtÞ � I0HðtÞ; t < se; ð22Þ
fðseÞ ¼ s0: ð23Þ

It follows from Eqs. (15)–(17) as well as Eqs. (22),(23) that the
carrier packet’s effective mobility determined by the trapping/
detrapping events is given by leffðtÞ ¼ l0HðtÞ. The effective carrier
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