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a b s t r a c t

We propose that the origin of the Vogel–Fulcher–Tammann law is the increase of the range of elastic
interaction between local relaxation events in a liquid. In this picture, we discuss the origin of coopera-
tivity of relaxation, the absence of divergence of relaxation time at a finite temperature and the crossover
to a more Arrhenius behavior at low temperature.

� 2008 Elsevier B.V. All rights reserved.

The transition of a liquid into a glass on lowering the tempera-
ture may appear conceptually simple, yet this phenomenon has
turned out to be one of the most difficult and controversial prob-
lems in condensed matter physics, the problem of the glass transi-
tion [1,2]. At high temperature, relaxation time s of a liquid follows
Arrhenius dependence. On lowering the temperature, s almost uni-
versally deviates from Arrhenius dependence, and follows the Vo-
gel–Fulcher–Tammann (VFT) law:

s ¼ s0 exp
A

T � T0

� �
; ð1Þ

where A and T0 are constants. The origin of the VFT law is the main
open question in the field of the glass transition [1,2].

A related open question follows from the form of the VFT law,
namely what happens at T0. Because s formally diverges at T0, sev-
eral models have suggested that a phase transition from a liquid to
a glass phase can exist [1,2]. Because the divergence is not ob-
served in an experiment, it was proposed that the phase transition
is avoided due to sluggish dynamics when s exceeds experimental

time scale. However, the nature of the phase transition and the sec-
ond phase is not clear, which continues to fuel the current debate
[1,2]. Interestingly, the VFT law changes to a more Arrhenius form
at low temperature, pushing the divergence temperature down [3].
The origin of this crossover is not understood.

Another related problem is the physical origin of ‘cooperativity’.
The notion of cooperativity of molecular motion, which sets in a li-
quid as temperature is lowered, was introduced and intensely dis-
cussed in several popular theories of the glass transition. These
theories are based on the assumption that ‘cooperatively rearrang-
ing regions’, ‘domains’ or ‘clusters’ exist in a liquid, in which atoms
move in some concerted way that distinguishes these regions from
their surroundings [1,2,4–7]. The physical origin of cooperativity is
not understood, nor is the nature of concerted motion.

A glass is different from a liquid by virtue of its ability to sup-
port shear stress. This suggests that the change of stress relaxation
mechanism in a liquid on lowering the temperature is central to
the glass transition process, yet stress relaxation is not discussed
in popular glass transition theories, including entropy, free-vol-
ume, energy landscape and other approaches [2].

In this paper, we discuss how stress relaxation in a liquid
changes with temperature. We propose that the origin of the VFT
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law is the increase of the range of elastic interaction between local
relaxation events. In this theory, we also discuss the origin of coop-
erativity of relaxation, the absence of divergence of s at a finite
temperature and the crossover to a more Arrhenius behavior at
low temperature.

Relaxation and flow in a liquid proceed by elementary local
structural rearrangements, during which atoms jump out of their
cages. We call these rearrangements local relaxation events (LREs).
Because the divergence of the elastic field due to a LRE is zero, a
LRE is not accompanied by compression of the surrounding liquid,
and can be viewed, in a simple model, as a pure shear event [2].
Therefore, in discussing how LREs interact elastically, we consider
shear LREs. A typical shear relaxation event is shown in Fig. 1 (term
‘concordant’ in the figure caption is not important here, and will be
explained later). The accompanied structural rearrangement pro-
duces elastic shear stress which propagates through the system
and affects the relaxation of other events. The important question
here is how does this stress affect relaxation of other LREs in the
liquid?

Lets consider how the changes of stresses due to remote shear
LREs affect a given local relaxing region, shown in the center in
Fig. 2. Relaxation of the central event involves deformation of the
‘cage’ around the jumping atom (see Fig. 1), and therefore depends
on the stresses that propagate from the remote LREs to the center.
A remote shear LRE, similar to the one shown in Fig. 1, creates elas-
tic shear waves, which include waves of high frequency. This is be-
cause the deformation, associated with a LRE, creates a wave with a
length comparable to interatomic separations (see Fig. 1), and
hence with a frequency on the order of the Debye frequency. At
high frequency x > 1=s, a liquid supports propagating shear waves
[8], which propagate stress and its variations from remote LREs to
the central point. If s is macroscopically defined as the time of de-
cay of shear stress in a liquid [8,9], del ¼ cs gives the length of this
decay, where c is the speed of sound. Here, del gives an estimation
of the maximal range over which shear stress decays in a liquid. At
the microscopic level, the relevance of del ¼ cs is as follows. A high-
frequency shear wave originating from a LRE propagates stress un-
til a remote LRE takes place at the front of the wave, at which point
the wave front is absorbed by the remote LRE. Suppose this hap-

pens at distance del from the original LRE. del can be calculated
from the condition of equality of the wave travel time, del=c, and
the time at which the remote LRE takes place at point del. The latter
time is given by s, because microscopically, s is defined as the
average time between two consecutive LREs at one point in space
[8], and we obtain del ¼ cs as before.

Therefore, del defines the maximal distance over which the cen-
tral LRE is affected by elastic shear stresses due to other LREs in a
liquid (see Fig. 2). For this reason, del can be called the liquid elas-
ticity length. Note that relaxation of the central event is affected
by all those stresses that have enough time to propagate to the
center. Because it takes time s for the central event to relax, its
relaxation is affected by the stresses from all LREs located distance
cs away. After time s, the central event relaxes, and the process re-
peats. Therefore, the definition del ¼ cs is self-consistent.

Because c is on the order of a=s0, where a is the interatomic sep-
aration of about 1 Å and s0 the oscillation period, or inverse of De-
bye frequency (s0 � 0:1 ps),

del ¼ cs ¼ a
s
s0
; ð2Þ

On lowering the temperature, s increases as s ¼ s0 expðV=kTÞ,
where V is the activation barrier of a LRE [8] (here, V can be temper-
ature-dependent). According to Eq. (2), this increases del and the
number of LREs that elastically interact with a given event. We pro-
pose that this is the key to the super-Arrhenius relaxation.

Before discussing the VFT law itself, we note that Eq. (2) imme-
diately gives the crossover from non-cooperative to cooperative
relaxation. When, at high temperature, s � s0, del � a (see Eq.
(2)), and del < dm, where dm is the distance between neighboring
LREs of about 10 Å (dm is the distance between the centers of
neighboring molecular cages). This means that LREs do not elasti-
cally interact. As s increases on lowering the temperature, del P dm

becomes true. At this point, LREs are no longer independent, be-
cause relaxation of a LRE is affected by elastic stresses from other
events. This discussion, therefore, clarifies the physical origin of
cooperativity. Here, we do not need to assume or postulate cooper-
ativity of relaxation as in the previous work [1,2,4–7]. In this pic-
ture, relaxation is ‘cooperative’ in the general sense that LREs are
not independent, but the origin of this cooperativity is the usual
elastic interaction. We have recently shown how this interaction
gives rise to stretched-exponential relaxation (SER), a universal
feature of supercooled liquids [10]. The crossover from exponential
relaxation to SER takes place when del ¼ dm. According to Eq. (2), s
at the crossover, sc, is a universal value: sc ¼ s0dm=a. This gives sc

of about 1 ps, consistent with the numerous experiments [11,12].
In order to derive the VFT law, we recall the previous discussion

that V is given by the elastic shear energy of a liquid around a LRE
[2,13,14]. The energy needed for an atom to escape its cage at the
constant volume is very large because of the strong short-range
interatomic repulsions, hence it is more energetically favorable
for the cage to expand, reducing the energy needed for escape.
Such an expansion elastically deforms the surrounding liquid,
hence V is given by the work of the elastic force needed to deform
the liquid around a LRE. Because this deformation does not result
in the compression of the surrounding liquid (for the displacement
field u created by an expanding sphere, divðuÞ ¼ 0Þ, V is given by
the background shear energy of the liquid. This was confirmed
by the experiments showing that V increases with the liquid shear
energy [14].

We now recall the previous discussion of how LREs redistribute
external stress. In discussing creep, Orowan introduced ‘condor-
dant’ LREs [15]. A concordant shear LRE is accompanied by a strain
in the direction agreeing with the applied external stress, and re-
duces the local stress and energy (see Fig. 1). In order to counter-
balance this decrease, other local regions in a system support more

Fig. 1. An example of a concordant local relaxation event. Solid and dashed lines
around the shaded atoms correspond to initial and final positions of a rearrange-
ment, respectively. Arrows show the direction of external stress.

d

Fig. 2. Illustration of the elastic interaction between local relaxation events. This
interaction takes place within the range del from the central relaxing regions.
Shaded and open circles represent local relaxing regions inside and outside,
respectively, of the interaction sphere.
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