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Abstract

Determination of the distribution of relaxation times (DRT) from a wide variety of the time- and the frequency-domain material func-
tions, such as polarization current and charge, real and imaginary parts of complex dielectric permittivity and complex dielectric mod-
ulus, the appropriate mechanical and magnetic counterparts is generalized as a filtering problem on a logarithmic time or frequency scale.
Algorithms of the appropriate digital DRT estimators are derived. A novel regularization strategy is proposed based on choosing sam-
pling rate for the input data, which ensures acceptably low random error of the recovered spectra. Optimum frequency ranges and sam-
pling rates are found for determination of the relaxation spectrum from the real part of complex permittivity and complex modulus. A
multi-filter DRT recovery strategy is suggested by a bank of filters with different smoothing abilities.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Determination of distribution of relaxation times (DRT)
without any exaggeration may be categorized as one of all
the time the most challenging and hard ill-posed inversion
problems, which despite considerable effort devoted cannot
be considered to be completely solved.

In the present paper, an attempt is made to consider and
analyze the problem of determination of the relaxation
spectrum from the perspective of up-to-date signal process-
ing [1].

Motivation of this work is to solve DRT recovery prob-
lem based on the novel data processing technologies [1] and
to derive accurate, robust and computationally efficient
algorithms operating without employing numerical integra-
tion and extrapolation of the data outside the measured
range.

2. Theoretical background

Mathematically, determination of the function of DRT
or the relaxation spectrum F(s) from various time- and fre-
quency-domain material functions x(u) reduces to the
inversion of an integral transform [2–4]

xðuÞ ¼
Z 1

0

F ðsÞKðu; sÞds=s; 0 < u <1 ð1Þ

with kernels K(u,s) of the type

Kðu; sÞ ¼

expð�u=sÞ=s polarization current ðaÞ
expð�u=sÞ stress relaxation ðbÞ
1� expð�u=sÞ polarization current ðcÞ
1=ð1þ u2s2Þ real part of permittivity ðdÞ
us=ð1þ u2s2Þ loss factor ðeÞ
u2s2=ð1þ u2s2Þ real part of modulus ðfÞ

8>>>>>>>><
>>>>>>>>:

;

ð2Þ
where variable u represents time or frequency.

Since kernels K(u,s) depend on the ratio or product of
arguments u and s, Eq. (1) may be converted in the form
of the Mellin convolution type transform
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xðuÞ ¼ F �M k ¼
Z 1

0

F ðsÞkðu=sÞds=s; ð3Þ

where �M denotes the Mellin convolution and k(u) are ker-
nels (2a)–(2f) modified in the form needed for converting
Eq. (1) into Eq. (3).

Material functions x(u) used for inversion (1) extend
usually over many decades of time or frequency and are
typically considered on a logarithmic scale [2–4]

u� ¼ logqu=u0; ð4Þ

where u0 is an arbitrary normalization constant often cho-
sen equal to 1. For logarithmic arguments (4), to remember
that u ¼ u0qu� , Eq. (3) alters into the appropriate Fourier
convolution type transform

xðqu� Þ ¼ F ðqu� Þ �F kðqu� Þ
having kernels depending on the difference of logarithmic
arguments. Consequently, DRT may be formally deter-
mined by the appropriate deconvolution

F ðqu� Þ ¼ xðqu� Þ �F k�1ðqu� Þ; ð5Þ
where k�1ðqu� Þ are inverse kernels existing in the sense
of generalized functions. One can derive the Mellin
transforms of k�1ðqu� Þ as the reciprocals of the Mellin
transforms of kernels k(u)

HðjlÞ ¼ 1=M ½kðuÞ;�jl� ¼ 1

Z 1

0

kðuÞu�jl�1 du
�

; ð6Þ

where j ¼
ffiffiffiffiffiffiffi
�1
p

and parameter l named the Mellin fre-
quency [5] represents the frequency of a function, whose
independent variable is logarithmically transformed.

Deconvolution (5), which can be considered as an ideal
DRT estimator, represents an ideal filter [1] operating on a
logarithmic time- or frequency-domain. It may be imple-
mented by a digital filter [1]

F ½m� ¼
X1

n¼�1
h½n�xðm� nÞ ð7Þ

operating with equally spaced data on a logarithmic scale,
which manifest as the data spaced according to geometric
progression un = u0qn on a linear scale (logarithmic sam-
pling [5–10]). For the logarithmically sampled data, Eq.
(7) modifies into the following general algorithm

F ðu0qmÞ ¼
X1

n¼�1
h½n�xðu0qm�nÞ; ð8Þ

where h[n] is a set of filter coefficients, which, of course,
must be limited to the finite number in practice. Depending
on kernels (2a)–(2f), general algorithm (8) modifies into the
following three sub-algorithms or digital DRT estimators

F ðu0qmÞ ¼

u0qm
P

n
h½n�xðu0qm�nÞ ðaÞ

P
n

h½n�xðu0qm�nÞ ðbÞ
P

n
h½n�xðq�m�n=u0Þ ðcÞ

8>>>><
>>>>:

; ð9Þ

where estimator (9a) relates to the polarization current
(kernel (2a)), (9b) – to the polarization charge and the
stress relaxation (kernels (2b) and (2c)), and (9c) – to the
frequency-domain data (kernels (2d)–(2f)).

Digital estimators have periodic frequency responses

HðejlÞ ¼
X1

n¼�1
h½n� expð�jln ln qÞ ð10Þ

in the Mellin transform domain, which approximate the
appropriate frequency responses (6) of ideal estimators.

It has been shown [8,9] that inversion (1) for six kernels
(2a)–(2f) reduces to the ideal filters with the three following
frequency responses

HðjlÞ ¼
�1=Cð�jlÞ for ð2aÞ–ð2cÞ ðaÞ
�2 sinðjpl=2Þ=p for ð2dÞ and ð2fÞ ðbÞ
2 cosðjpl=2Þ=p for ð2eÞ ðcÞ

8><
>: ;

ð11Þ

i.e. for the time-domain data, for the real parts, and for the
imaginary parts, respectively (Fig. 1). Consequently, only
three independent sets of coefficients h[n] are necessary
for determination of the relaxation spectrum from the
material functions described by kernels (2a)–(9f).

3. Performance of digital DRT estimators

Accuracy of a digital DRT estimator is assessed by
summed square error E between the samples of an exact
relaxation spectrum Fexact(sm) and the corresponding
sequence F(sm) of the recovered spectrum

E ¼
XM

m¼1

½F exactðsmÞ � F ðsmÞ�2; ð12Þ

while noise behavior is described by noise coefficient S
transforming input noise (random error) variance r2

x into
the output noise variance r2

y

Fig. 1. Magnitude responses of the three ideal DRT estimators. Vertical
lines show bandwidths [�p/lnq, p/lnq] corresponding to different q.
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