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Abstract

The medium-range order of molecular dynamics (MD) simulated binary alkali silicate glass with 5, 10, 15, 20, 25, and 33.3 mol% of
Na2O is studied in terms of the connectivity groups Qn;a1 ; ...; an , where n stands for the number of bridging oxygen atoms, and a1, . . .,an

indicate the type of the connected Qn units. MD structure significantly deviates from the random connectivity model. The deviations
were quantified by means of the quasi-chemical approach. The interchange energy between Q3 and Q4 units was found to be negative,
indicating preferential formation of Q3–Q4 connections. This means that no tendency to phase separation was observed. Although alkali
cations were apparently non-homogeneously distributed in space, regions abounding in Q3–Q3 and Q4–Q4 connections were not formed.
It was suggested that grouping of alkali cations can be also mediated by the Q4, 4433 groups.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

If someone is interested in structural investigations of
alkali silicate glasses, he/she usually wants to know
whether the proposed model reveals something more about
the medium-range ordering in silicate glass, e.g. about mis-
cibility, a spatial distribution of alkalis, and/or glass tran-
sition behavior. Molecular dynamics (MD) simulations
should be in principle the prime tool for answering such
questions.

Distributions of Qn units in binary sodium silicate
glasses simulated by molecular dynamics are close to the
random bonding model mentioned previously by Gurman
[1], Araujo [2], and Bechstedt and Hübner [3] for up to
33 mol% of Na2O. The simple stoichiometric model pre-
dicting presence of only Q4 and Q3 units in the glass struc-

ture is much closer to experimental results of 29Si MAS-
NMR [4–6]. However, this model does not contain Q2 units
which are inherently present in the MD simulated glass. A
remarkable improvement is offered by both Gurman’s
quasi-chemical model [1] and Shakhmatkin’s thermochem-
ical model [7] which connect thermodynamic and structural
approaches to silicate glass. These models introduce addi-
tional parameters achieving this way quantitative agree-
ment with both experiments and MD simulations.

Q-species reflect the second nearest neighbor ordering
around Si. On the other hand, Qn;a1; ...; an connectivity
groups (n stands for the number of bridging oxygen atoms,
and a1, . . .,an indicate a type of the connected Qn units)
carry a piece of structural information about the fourth
nearest neighbors [4,8].

The random connectivity model for the distribution of
Qn;a1; ...; an units might give meaningful hints for experimen-
tal glasses probed by the multiple quantum NMR tech-
nique as well as molecular dynamics [4,9]. Unfortunately,
high quality experimental results are not available till
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now, therefore any deeper discussions in this field would be
premature. On the other hand, Qn;a1; ...; an units distributions
are easily extracted from MD simulations; hence a direct
comparison is possible and straightforward.

This work is a follow-up to our previous paper [9]. In
that paper, an attempt to interpret the experimental multi-
ple quantum 29Si NMR results with help of the random
connectivity model (RCM) was made. Regrettably, it was
found that Qn;a1; ...; an distributions extracted from NMR
data did not fulfil the basic connectivity requirement
N34 = N43 which says that number of connections from
Q3 to Q4 must be the same as from Q4 to Q3. On the other
hand, that paper indicated that the concept of RCM model
can be further developed in connection with a molecular
dynamics (MD) simulation. The presented work analyzes
Qn;a1; ...; an distributions in MD simulated sodium silicate
glasses containing 5, 10, 15, 20, 25, 33.3 mol% of Na2O
with help of the RCM model and the quasi-chemical
approach (QCA) [10], which considerably simplifies the
problem by introducing the concept of interchange ener-
gies, DEij. It also tries to address the questions of miscibility
and the spatial distribution of alkalis in terms of silica sub-
network connectivity.

2. Theory and simulation

2.1. The random connectivity model (RCM)

The random connectivity model was already described
in paper [9] and to the large extent also in Araujo’s paper
[2]. RCM enhances the models predicting Qn distribution
by incorporating the connections among silicon tetrahedra
(SiO4) into the model. The tetrahedra (Qn units) are linked
fully on the random base. The probability, pi, that the ran-
domly chosen bond between two adjacent tetrahedral units
includes a Qi unit, is given by

pi ¼
iyðQiÞPn
j¼1jyðQjÞ

; ð1Þ

where i is the number of bridging oxygens (BO)
(i = 1, . . .,n) and y(Qi) is a fraction of Qi units out of total
Q-species. The probability of finding a certain connectivity
group Qn;a1; ...; an has to obey the multinomial distribution,
which generalizes the binomial one to experiments with
more than two outcomes. Multinomial probabilities are
computed as follows:

P ðx1; x2; . . . xnÞ ¼
n!

x1!x2! . . . xn!
� px1

1 px2
2 . . . pxn

n ; ð2Þ

where xi are constrained by the number of trials (number of
BO), n,

x1 þ x2 þ . . . þ xn ¼ n; ð3Þ
and xi stands for the number of the Qi-units connected to
the central Q-unit. Instead of using the statistical notation
P(x1, x2, . . .,xn) we introduce the structurally related nota-
tion yðQn;a1; ...; anÞ as was already used in papers [8,4]

yðQn;a1; ...; anÞ ¼ yðQnÞ � Pðx1; x2; . . . xnÞ: ð4Þ

Number of connections between Qi and Qj units, Nij, is gi-
ven by the following sum

Nij ¼
X

fx1; ...; xig
xjPðx1; x2; . . . xiÞ � yðQiÞ: ð5Þ

Nij contributes to the overall connectivity, N, of a silicate
system

N ¼
X

i;j

N ij ¼
NðBOÞ
NðSiÞ : ð6Þ

This sum equals two for silica glass where only Q4 units are
found and 1.5 for disilicate glass containing only Q3 units.

2.2. Quasi-chemical approach to group connectivity (QCA)

The lattice model developed by Guggenheim in 1952
[10,11] is well suited for the description of liquid structures.
The fundamental assumption is the division of the liquid
volume into cells (sites) so that each molecule occupies
one site of a lattice. This construction introduces the equi-
librium distance between the molecules, which provides the
basis for a corresponding coordination number. In the zer-
oth approximation the contact surfaces of pairs (represent-
ing bonds) are proportional to the general geometrical
surfaces of the molecules. This is equivalent to a completely
random distribution of molecules. Orientational effects
conditioned by the energy differences and molecular inho-
mogeneities can be accounted for by a quasi-chemical equi-
librium. In this equilibrium the contact surfaces are
weighted by Boltzmann factors, which consider the inter-
change energies of the contact pairs. In the following only
the basic assumptions and some important equations are
summarized. It is assumed that each Qn unit has the coor-
dination number, n, in a well-defined lattice. A distinction
is made between connections of like (ii) and unlike (ij)
units. Calculating the numbers of connections Nii and Nij

for the unit of type i, n condition equations are obtained:

iyðQiÞ ¼ 2N ii þ
X
j 6¼i

N ij for i ¼ 1; . . . ; n: ð7Þ

We now introduce the quasi-chemical equilibrium for the
connections, i.e.

Nii þ N jj $
DEij

2N ij for i 6¼ j; ð8Þ
N 2

ij

N iiNjj
¼ exp

�2DEij

RT

� �
for i 6¼ j; ð9Þ

where the quantities

DEij ¼ Eij � ðEii þ EjjÞ=2; ð10Þ

are by definition the free interchange energies per connec-
tion. In general, the DEij, are functions of temperature.
However, in the following we consider the special case
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