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Abstract

A theoretical ‘complete soft-mode-dynamics’ model of the origin and properties of the boson peak accompanied by a high-frequency
sound, observed in glasses of a certain type, is described. The origin is determined by interaction of non-acoustic vibrations with acoustic
phonons and a Ioffe–Regel crossover for their inelastic scattering. The non-acoustic excitations are associated with vibrations of atomic
soft-mode ‘defects’. Two types of boson peak can be predicted in agreement with experiments.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The purpose of this paper is to describe results of a
recent theoretical ‘complete soft-mode-dynamics’ model of
the boson peak (BP) accompanied by a high-frequency
sound (HFS), as well as of related vibrational dynamic
and thermal properties, observed in glasses defined here
as those of type I. The model is determined by a Ioffe–
Regel crossover (IRC) originally defined [1] as a crossover
from a weak elastic scattering of acoustic phonons to
strong scattering. The present model extends the original
definition of a IRC to inelastic scattering, which induces
a strong hybridization of different types of excitations
and gives rise to both BP and HFS. In general, experimen-
tally observed universal dynamic and thermal properties of
glasses at low frequencies and temperatures are rather due
to the existence of both acoustic phonons and ‘anomalous’
non-acoustic vibrational excitations of moderately low fre-
quencies m � x/2p, 0.01 THz < m [ mM � 3 THz. For
glasses of type I, probably including v-SiO2 and CKN [2],

the properties at mBP [ m [ 3mBP appear to contain both
a broad asymmetric boson peak (BP) at m = mBP � 1 THz,
followed by a HFS with an acoustic-like dispersion law,
m2(q) � a2 + b2q2, where a = const 5 b = const, q = jqj
and q is the wave vector. In general, the temperature depen-
dent BP observed in inelastic photon (Raman, X-ray) or
neutron scattering spectra of glasses is located around a
frequency mBP independent of q. In the present model, for
brevity, we focus on Raman scattering characteristics (total
scattering intensity IR(m,T), reduced scattering intensity
I r

RðmÞ and dynamic susceptibility v00RðmÞÞ [3], which appear
to be most helpful for choosing the relevant model of BP
in glasses. The characteristics are related to each other as
follows: IRðm;T Þ ¼ I r

RðmÞmf1þ nðm;T Þg ¼ v00RðmÞf1þ nðm;T Þg,
where n(m,T) = [1 + exp(hm/kT)]�1 is the boson factor.

2. Soft-mode-dynamics model

The simplest soft-mode-dynamics (SMD) model of
vibrational dynamics in glasses of type I is based on an iso-
tropic elastic continuum, containing randomly distributed
localized atomic soft-mode ‘defects’ of concentration csm,
with independent quasi-local vibrational excitations [4].
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The general idea is that the soft-mode excitations coexist
and interact with acoustic phonons in the THz range of fre-
quencies m 0. Most numerous are harmonic soft-mode exci-
tations with their density-of states (DOS) J0(e 0 � m 02) =
g0(m 0)/2m 0, or equivalent DOS g0(m 0) / csm, at typical
csm � 10�2. The main contribution to dynamic and thermal
properties comes from frequencies m 0 � m0 around a typical,
most probable, frequency m0 � 0.1mD � 1 THz. The Hamil-
tonian H = Hac + Hsm + Vac�sm includes terms describing
an atomic soft mode x (Hsm) at its location R and for
acoustic phonons (Hac) with their displacement u(R) in
the continuum, as well as the interaction Hamiltonian
approximated as Vac�sm(x) / bxe(R), with b the average
coupling parameter of typical magnitude jbj � 1 eV
(�hmD). The interaction gives rise to essential changes in
the excitation energy spectrum and a related IRC, as well
as to interactions between soft modes. The first basic result
of the model is the derived equation for the dispersion law
e = e(q; e 0) of well-defined (wave-like) excitations of low
eigen-frequencies m = e1/2:

eðe� e0Þ � s2
0q2ðe� e0 þ Dðe0ÞÞ ¼ 0: ð1Þ

In Eq. (1): D(e 0) = e 0csmQ2, e0 � e0 � m2
0, Q2 � 10/e0 for typ-

ical values of the model parameters and s0 is a typical
sound velocity. Eq. (1) describes the interaction rearranged
excitation spectrum e = e1,2(q;e 0) with two branches sepa-
rated by a gap of width D of typical value D(e0) � 0.1e0.
The gap is a manifestation of a general quantum-mechan-
ical phenomenon of repelling off each other two ‘energy
levels’, sound-wave and soft-mode frequencies, which inter-
act and intersect at m0

1ðq0Þ ¼ s0q0 ¼ m0. The spectrum results
from strong hybridization of acoustic vibrations with soft-
mode ones around and above the gap, due to a IRC from
weak inelastic scattering of acoustic phonons by soft-mode
vibrations to strong scattering. Indeed, the associated
acoustic mean-free path lðinÞac�smðm0Þ around the gap (m 0 � m0)
can be estimated in the general soft-mode model [5] as a
short one close to the acoustic wave-length kac(m 0) = s0/m 0,
by the definition of the IRC and its frequency mðinÞIR :

lðinÞac�smðmÞ � kacðmÞ ¼ s0=m; at m ¼ mðinÞIR � m0 � 1 THz:

ð2Þ

This is the second basic result of the model under discus-
sion. Then, the frequency mðinÞIR ð� m0Þ does not practically
depend on q, in accord with the physical sense of a IRC,
and the related half-widths c1,2 of ‘eigen-frequencies’
m1;2 ¼ e1=2

1;2 are large, c1;2 � mðinÞIR � m0. The spectral branch
e1(q;e 0) below the lower gap edge is of ‘pure’ acoustic ori-
gin, e1ðq; e0Þ / s2

0q2=ð2pÞ2. The branch e2(q; e 0) above the
upper gap edge, with an acoustic-like dispersion law
e2ðq; e0Þ / e0 þ s2

0q2=ð2pÞ2, describes wave-like excitations
formed due to a strong hybridization of acoustic phonons
with soft-mode vibrational excitations in the IRC for
inelastic scattering. These wave-like excitations are similar
to the observed HFS excitations [2] of relatively high m, at
m0 < m [ pmaxm0 (�mD) and an empirical pmax � 3.

3. Results

In what follows, results of calculations of the total den-
sity of vibrational states (DOS), J(e = m2), are briefly
described. The general formula is as follows:

JðeÞ ¼
Z

de0J 0ðe0Þ � Iðe; e0Þ ¼ gðmÞ=2m; ð3Þ

where the lower limit of the integral is e0min � 0:01e0 while
the upper limit is e0max � e0. For e1(q)� e0, as well as above
the IRC region at e2(q) > e0, where the half-widths c1,2

of the eigen-frequencies m1,2 are small, c1,2/m1,2� 1 (well-
defined excitations), a standard approximation I0(e; e 0) of
the function I(e; e 0) at a given e 0 is as follows [4]:

Iðe; e0Þ ’ I0ðe; e0Þ ¼ ða1=2pÞ3
X

j

Z
d3qdðe� ejðq; e0ÞÞ; ð4Þ

where j = 1,2 for the two spectral branches of Eq. (1).
However, the approximation (4) fails in the IRC region
characterized by large half-widths c1,2, or equivalently
kac/lac�sm � 1. In this region, the perturbation theoretical
approach of scattering theory becomes irrelevant, and a
consistent analytical theory of the effective eigen-frequen-
cies X1,2 = m1,2 + ic1,2 does not seem to be available so
far. In this region, we must apply for numerical calcula-
tions of I(e;e 0) a phenomenological approach, substituting
a regular function, e.g., p�1c2

j ½x2 þ ðc2
j Þ

2	�1, for d(x).
Numerical calculations of J(e) have been performed by

applying, in addition to [4] with n = 0.5, both a simplest
soft-mode vibrational DOS [5] J 0ðe0; nÞ ¼ g0ðm0; nÞ=2m0 ¼
e�1

0 ðe0=e0Þn, at 0.5 6 n 6 1.5, and a different soft-mode
vibrational DOS J0 * (e 0) = g0 * (m 0)/2m 0, with g0 * (m 0)/(m 0)2

recently calculated [6] by accounting for the contribution

Fig. 1. Frequency dependence of functions g(m)/mm (in arbitrary units), at
J0(e 0) = J0(e 0; n = 0.5), curves 1 (m = 2) and 3 (m = 1), and at
J0(e 0) = J0 * (e 0), curves 2 (m = 2) and 4 (m = 1).
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