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Abstract

A theoretical ‘complete soft-mode-dynamics’ model of the origin and properties of the boson peak accompanied by a high-frequency
sound, observed in glasses of a certain type, is described. The origin is determined by interaction of non-acoustic vibrations with acoustic
phonons and a loffe-Regel crossover for their inelastic scattering. The non-acoustic excitations are associated with vibrations of atomic
soft-mode ‘defects’. Two types of boson peak can be predicted in agreement with experiments.
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1. Introduction

The purpose of this paper is to describe results of a
recent theoretical ‘complete soft-mode-dynamics’ model of
the boson peak (BP) accompanied by a high-frequency
sound (HFS), as well as of related vibrational dynamic
and thermal properties, observed in glasses defined here
as those of type 1. The model is determined by a loffe-
Regel crossover (IRC) originally defined [1] as a crossover
from a weak elastic scattering of acoustic phonons to
strong scattering. The present model extends the original
definition of a IRC to inelastic scattering, which induces
a strong hybridization of different types of excitations
and gives rise to both BP and HFS. In general, experimen-
tally observed universal dynamic and thermal properties of
glasses at low frequencies and temperatures are rather due
to the existence of both acoustic phonons and ‘anomalous’
non-acoustic vibrational excitations of moderately low fre-
quencies v=w/2n, 0.01 THz<v < vy~3THz. For
glasses of type I, probably including v-SiO, and CKN [2],
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the properties at vgp < v < 3vgp appear to contain both
a broad asymmetric boson peak (BP) at v=vgp ~ 1 THz,
followed by a HFS with an acoustic-like dispersion law,
Vi(q) ~ a* + b*¢>, where a=const # b=const, g=|qg]
and ¢ is the wave vector. In general, the temperature depen-
dent BP observed in inelastic photon (Raman, X-ray) or
neutron scattering spectra of glasses is located around a
frequency vgp independent of ¢. In the present model, for
brevity, we focus on Raman scattering characteristics (total
scattering intensity Ir(v,7), reduced scattering intensity
Iz (v) and dynamic susceptibility yx(v)) [3], which appear
to be most helpful for choosing the relevant model of BP
in glasses. The characteristics are related to each other as
follows: Ir(v,T) =Ix Wv{l +n(v.T)} = g M{l +n(v,T)},
where n(v,T) = [1 + exp(hv/kT)]"" is the boson factor.

2. Soft-mode-dynamics model

The simplest soft-mode-dynamics (SMD) model of
vibrational dynamics in glasses of type I is based on an iso-
tropic elastic continuum, containing randomly distributed
localized atomic soft-mode ‘defects’ of concentration cyy,
with independent quasi-local vibrational excitations [4].
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The general idea is that the soft-mode excitations coexist
and interact with acoustic phonons in the THz range of fre-
quencies v'. Most numerous are harmonic soft-mode exci-
tations with their density-of states (DOS) Jo(¢' =v'?) =
go(v))/2v', or equivalent DOS go(v') x csm, at typical
Csm ~ 1072, The main contribution to dynamic and thermal
properties comes from frequencies v' = vy around a typical,
most probable, frequency vy ~ 0.1vp ~ 1 THz. The Hamil-
tonian H = H,. + Hg,, + V,c_sm includes terms describing
an atomic soft mode x (Hgy,) at its location R and for
acoustic phonons (H,.) with their displacement u(R) in
the continuum, as well as the interaction Hamiltonian
approximated as V,._sm(x) < fxe(R), with [ the average
coupling parameter of typical magnitude |f|~1eV
(>>hvp). The interaction gives rise to essential changes in
the excitation energy spectrum and a related IRC, as well
as to interactions between soft modes. The first basic result
of the model is the derived equation for the dispersion law
e =¢(q; ¢') of well-defined (wave-like) excitations of low
eigen-frequencies v = eV

ee—&) —s3q’ (e — & + A(e)) = 0. (1)

In Eq. (1): A(¢') = ¢'cqnQ7, & ~ &9 = v}, Q> = 10/, for typ-
ical values of the model parameters and sy is a typical
sound velocity. Eq. (1) describes the interaction rearranged
excitation spectrum & = ¢ 5(¢;¢’) with two branches sepa-
rated by a gap of width 4 of typical value A(gy) = 0.1¢.
The gap is a manifestation of a general quantum-mechan-
ical phenomenon of repelling off each other two ‘energy
levels’, sound-wave and soft-mode frequencies, which inter-
act and intersect at v9(¢') = sog’ = v'. The spectrum results
from strong hybridization of acoustic vibrations with soft-
mode ones around and above the gap, due to a IRC from
weak inelastic scattering of acoustic phonons by soft-mode
vibrations to strong scattering. Indeed, the associated
acoustic mean-free path /i __(v') around the gap (v = vo)
can be estimated in the general soft-mode model [5] as a
short one close to the acoustic wave-length Z,.(v') = so/V/,
by the definition of the IRC and its frequency vﬁ:):

(in)

Ll (V) R Aae(v) = s50/v, at v= vﬁ? ~ vy ~ 1 THz.

(2)

This is the second basic result of the model under discus-
sion. Then, the frequency vﬁ'{)(% vo) does not practically
depend on ¢, in accord with the physical sense of a IRC,
and the related half-widths y,, of ‘eigen-frequencies’
Vip = 9}/22 are large, y,, = v~ vy. The spectral branch
&1(¢;¢") below the lower gap edge is of ‘pure’ acoustic ori-
gin, &(q;¢) o s2¢%/(2n)°. The branch &(¢; &) above the
upper gap edge, with an acoustic-like dispersion law
&x(q; ) o € +s2¢%/(2n)°, describes wave-like excitations
formed due to a strong hybridization of acoustic phonons
with soft-mode vibrational excitations in the IRC for
inelastic scattering. These wave-like excitations are similar
to the observed HFS excitations [2] of relatively high v, at
Vo <V < PmaxVo (Kvp) and an empirical pyax ~ 3.

3. Results

In what follows, results of calculations of the total den-
sity of vibrational states (DOS), J(¢=v?), are briefly
described. The general formula is as follows:

J(&) = /ds'Jo(s') (g €)= g(v)/2v, (3)

where the lower limit of the integral is ¢ . ~ 0.01g, while
the upper limit is ¢/, ~ &. For &(q) < ¢, as well as above
the IRC region at &(g) > ¢, where the half-widths y;,
of the eigen-frequencies v, are small, y;»/vi» < 1 (well-
defined excitations), a standard approximation [y(e; ') of
the function I(g; ¢’) at a given ¢’ is as follows [4]:

1(5;3'):10(8;8'):(a1/2n)32 / dqd(e —¢(q;€)),  (4)

where j=1,2 for the two spectral branches of Eq. (1).
However, the approximation (4) fails in the IRC region
characterized by large half-widths y;,, or equivalently
Jacllie—sm = 1. In this region, the perturbation theoretical
approach of scattering theory becomes irrelevant, and a
consistent analytical theory of the effective eigen-frequen-
cies Qy,=v;,t1y;, does not seem to be available so
far. In this region, we must apply for numerical calcula-
tions of I(¢;¢’) a phenomenological approach, substituting
a regular function, e.g., n~'y7 [ + (ij_)zr1’ for 8(x).
Numerical calculations of J(¢) have been performed by
applying, in addition to [4] with n = 0.5, both a simplest
soft-mode vibrational DOS [5] Jo(¢';n) = g,(v;n)/2v =
e (e /e0)", at 0.5<n< 1.5, and a different soft-mode
vibrational DOS Jo*(¢') = go*(v')/2v', with go*(v))/(v')?
recently calculated [6] by accounting for the contribution
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Fig. 1. Frequency dependence of functions g(v)/v™ (in arbitrary units), at
Jo(e')=Jo(¢/; n=0.5), curves 1 (m=2) and 3 (m=1), and at
Jo(&') = Jo* (&), curves 2 (m=2) and 4 (m = 1).
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