Contents lists available at ScienceDirect

Materials Research Bulletin

journal homepage: www.elsevier.com/locate/matresbu

Synthesis, structure and properties of crystalline and nanocrystalline MnPS₃-poly(phenylene vinylene) intercalates

Ivonne M. Diaz Mesa, Peter J.S. Foot*, Roman A. Kresinski

Materials Research Centre, Faculty of SEC, Kingston University London, Penrhyn Road, Kingston upon Thames KT1 2EE, UK

ARTICLE INFO

ABSTRACT

Article history: Received 19 May 2016 Received in revised form 21 August 2016 Accepted 23 August 2016 Available online 28 August 2016

Keywords: A. Chalcogenides

A. Layered compounds A. Organic compounds

B. Intercalation reactions

B. Luminescence

The preparation of luminescent semiconducting nanocomposites of crystalline and amorphous manganese phosphorus trisulfide (MnPS₃), containing intercalated poly(phenylene vinylene) [PPV] is reported. The materials were characterized by thermogravimetric analysis, infrared and Raman spectroscopy and X-ray diffractometry. Scanning electron microscopy was used to monitor the crystallinity and morphology of the host materials.

An average increase of 5.05 Å in the interlayer distance of MnPS₃ was observed by XRD, as a result of the intercalation of PPV. The resulting composite materials presented more stable photoluminescent properties than unintercalated PPV, and with slightly blue-shifted emission; they exhibited significantly higher electronic conductivities than MnPS₃ or the polymer alone. The effects of the intercalation host on the optical and electronic properties of the PPV guest are discussed.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Poly(*p*-phenylene vinylene) (PPV) is one of the most-studied electroluminescent conjugated polymers. It exhibits bright yellow-green fluorescence with an emission maximum at 551 nm (2.25 eV), and that property made it a prototype polymer for light-emitting diodes. Its electrical conductivity is enhanced upon oxidation (or reduction), which creates mobile radical ions and makes it a *p*-type (or *n*-type) semiconductor. However, like all opto-electronic polymers, it can degrade in the presence of oxygen and moisture; this results in the formation of crosslinks between the polymer chains, loss of delocalization and decreased electronic conductivity [1-3].

A possible solution to such problems is to synthesize composites containing the emissive polymer inside a lamellarstructured inorganic host that can accommodate organic molecules between its layers. The geometrical restrictions imposed by the inorganic host could result in better-organized polymer chains that would facilitate charge injection and transfer between the conducting units. Several research groups have reported the formation of composites of PPV and inorganic two-dimensional insulators [4–7]; however, intercalates of PPV between the layers of transparent semiconducting divalent metal

http://dx.doi.org/10.1016/j.materresbull.2016.08.037 0025-5408/© 2016 Elsevier Ltd. All rights reserved. thiohypophosphates ($M^{II}PS_3$ or $M^{II}_2P_2S_6$) and their luminescent properties have not been explored. In this paper, we report the synthesis and characterization of luminescent organic-inorganic composites containing PPV-intercalated MnPS₃.

The divalent metal thiohypophosphates are layer-structured compounds that have been studied by several research groups, mostly due to their ability to intercalate guest molecules, forming organic-inorganic materials with interesting magnetic and electronic properties [8–11]. In addition to their versatile intercalation chemistry, $M^{II}PS_3$ materials are often quite transparent in the visible region, which makes them ideal hosts for luminescent polymers with optoelectronic applications [12].

MPS₃ compounds are usually prepared as macroscopic crystals by high-temperature techniques [8–11]; however, they can also be produced as colloidal nanoparticles in aqueous solution at room temperature. This was first done by Foot et al. [13] by mixing a source of thiohypophosphate $(P_2S_6)^{4-}$ anions and a solution of M^{2+} cations. The process results in the production of large quantities of amorphous or nanocrystalline MPS₃ with analogous properties to those made by the inconvenient solid-state synthesis at high temperatures. Moreover, the crystallinity can be readily increased by annealing the products at about 300 °C for 2–4 h [13]. This method permits the production of thin-film coatings suitable for photovoltaic or photo-electrochemical applications.

One of the sources of $(P_2S_6)^{4-}$ used in the low-temperature route was the soluble sodium salt $Na_4P_2S_6$, first prepared by Falius [14]. The stoichiometric equation for the synthetic reaction is:

^{*} Corresponding author. *E-mail address:* p.j.foot@kingston.ac.uk (P.J.S. Foot).

 $6Na_2S + 2PCl_3 + {}^1\!/_2O_2 + H_2O \rightarrow Na_4P_2S_6 + 6NaCl + 2NaOH$

Colloidal MPS₃ compounds or amorphous precipitates are subsequently formed by reacting solutions of $Na_4P_2S_6$ with solutions of the metal in the M²⁺ state, and the overall reaction can be written as follows:

$Na_4P_2S_{6(aq)} + 2M^{2+}_{(aq)} \rightarrow 2MPS_3 + 4Na^{+}_{(aq)}$

The main aim of the present work was to synthesize and study manganese (II) thiohypophosphate ($MnPS_3$ or $Mn_2P_2S_6$) as a host material for the preparation of conjugated polymer/inorganic composites. Much previous investigation has been carried out on other MPS_3 intercalates of simple molecules, but this work has focused on the intercalation of the luminescent semiconductor PPV into $MnPS_3$.

As well as synthesizing single crystals and polycrystalline samples of $MnPS_3$ by the conventional high temperature method, we have used the alternative low-temperature route to produce them from colloidal suspensions, and have studied the physical and spectroscopic properties of the resulting nanocomposite materials with PPV.

2. Experimental

The overall synthetic strategy is outlined in Scheme 1.

2.1. Synthesis of intercalated composites

Intercalation of $MnPS_3$ (obtained by high-temperature synthesis)

All chemicals were purchased from Sigma Aldrich Ltd., UK, and used without further purification.

2.1.1. Synthesis of p-xylylene-bis(tetrahydrothiophenium chloride) (monomer) and poly(p-xylylene-bis(tetrahydrothiophenium chloride) (PPV precursor polymer)

Both of the above salts were synthesized by following the route described by Wessling and Zimmerman [15].

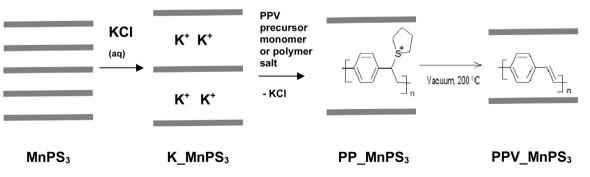
2.1.2. Synthesis of MnPS₃

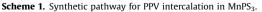
Stoichiometric amounts of sulfur (99.9%) (2.12 g; 0.06 mol), red phosphorus (99.9%) (1.02 g; 0.03 mol) and manganese (II) sulfide (99.9%) (1.81 g, 0.02 mol) were sealed in 20 cm long evacuated quartz tubes. The tubes were then heated at 720 °C with a linear temperature gradient to form crystalline products by sublimation at 680 °C, in a 3-zone tube furnace for 4 weeks, according to established methods [8,11].

Green polycrystalline material and thin platelet crystals were obtained from the crystal growth ampoule. The single crystals were typically about $1.4 \times 1.2 \times 0.03 \text{ mm}^3$. ICP analysis of a sample (single crystal) after dissolution in aqua regia led to the approximate formula $Mn_{0.93}P_{1.0}S_{3.3}$, but powder x-ray diffractometry (see below) only gave peaks in accordance with those for the stoichiometric compound, $Mn_2P_2S_6$ (JCPDS file #33-0903). Yield obtained: 4.38 g (73%).

2.1.3. Potassium ion intercalation

Single crystals of MnPS₃ (0.04 g; 2.14×10^{-4} mol) were added to an aqueous solution of KCl (5.0 mL; 2 M). The mixture was stirred for 2 h at ambient temperature. The solid was filtered off, washed with distilled water and dried under vacuum for 24 h at 80 °C. The product obtained (designated K_MnPS₃) was K_{0.5}Mn_{0.75}PS₃. Yield: 0.020 g (44%).


2.1.4. PPV intercalation


K_MnPS₃ crystals (0.06 g; 2.73×10^{-4} mol) were added to a methanolic solution of the precursor monomer p-xylylene-bis (tetrahydrothiophenium chloride) (11 mL; 0.2 M). The mixture was left stirring for 24 h under nitrogen; then it was cooled to 0 °C and NaOH (11 mL; 0.2 M; 0 °C) was added, after which it was stirred for a further hour. HCl (1M) was then added to neutralize it, and stirring was continued for two more hours, keeping the mixture at 0°C throughout the reaction. A green-yellow suspension was formed, containing the intercalated crystals, and it was dialvzed against water $(3 \times 2L)$ for 3 days to remove K⁺, Mn²⁺, Na⁺ and Cl⁻ ions. After this, the intercalated crystals containing poly(pxvlvlene-bis(tetrahvdrothiophenium chloride) (PPV precursor polymer) were filtered off, washed with methanol several times and then dried. Finally, they were placed under a stream of nitrogen and heated to 230 °C for 30 min to convert the precursor to PPV.

2.2. Intercalation of MnPS₃ (obtained by ambient-temperature solution route)

 $Na_4P_2S_6$ ·6H₂O was synthesized according to the literature method of Falius [14].

Two micellar solutions were prepared separately, using a similar approach to one in the literature [16,17]. One of them contained Brij-97 surfactant (3.2 g) in cyclohexane (40 mL), aqueous MnCl₂·4H₂O (0.02 g in 1.5 mL H₂O) and precursor polymer solution (5 mL, 0.2 M). The other solution contained Brij-97 (4.0 g) in cyclohexane (50 mL) and Na₄P₂S₆·6H₂O (0.03 g in 3 mL H₂O). The two solutions were mixed and left stirring for 48 h, and ethanol

Abbreviations: *MnPS*₃, MnPS₃ synthesized by a solid-state reaction at high temperature; *MnPS*₃_*LT*, MnPS₃ synthesized by solution chemistry at room temperature.; *K_MnPS*₃, K⁺-intercalated MnPS₃; *PP_MnPS*₃, PPV precursor polymer-intercalated MnPS₃; *PPV_MnPS*₃, PPV-intercalated MnPS₃, PPV-intercalated Mn

Download English Version:

https://daneshyari.com/en/article/1486904

Download Persian Version:

https://daneshyari.com/article/1486904

Daneshyari.com