Contents lists available at ScienceDirect

### Materials Research Bulletin



journal homepage: www.elsevier.com/locate/matresbu

# Controlled synthesis of Ag<sub>3</sub>PO<sub>4</sub>/BiVO<sub>4</sub> composites with enhanced visible-light photocatalytic performance for the degradation of RhB and 2, 4-DCP



## Xuemei Qi<sup>a,b</sup>, Miaoli Gu<sup>b</sup>, Xinyuan Zhu<sup>a</sup>, Jiang Wu<sup>c,\*</sup>, Qiang Wu<sup>b</sup>, Huimin Long<sup>b</sup>, Kai He<sup>b</sup>

<sup>a</sup> School of Chemistry and Chemical Engineering, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, PR China

<sup>b</sup> School of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, PR China

<sup>c</sup> School of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, PR China

#### ARTICLE INFO

SEVIEE

Article history: Received 13 July 2015 Received in revised form 29 October 2015 Accepted 21 March 2016 Available online 23 March 2016

- Keywords:
- A. Composites
- A. Semiconductors
- B. Chemical synthesis
- C. Transmission electron microscopy
- D. Catalytic properties

#### ABSTRACT

Ag<sub>3</sub>PO<sub>4</sub>/BiVO<sub>4</sub> composites were fabricated by in-situ precipitation method. Results showed that Ag<sub>3</sub>PO<sub>4</sub>/BiVO<sub>4</sub> composites exhibited higher photocatalytic activity than that of pure BiVO<sub>4</sub> and Ag<sub>3</sub>PO<sub>4</sub> sample under visible light irradiation. The effect of Ag<sub>3</sub>PO<sub>4</sub>:BiVO<sub>4</sub> ratio on the photocatalytic activity was systemically studied and the optimum molar ratio of Ag<sub>3</sub>PO<sub>4</sub>:BiVO<sub>4</sub> was 1:5. The Ag<sub>3</sub>PO<sub>4</sub>/BiVO<sub>4</sub> 5 exhibited excellent photocatalytic activity for the degradation of Rhodamine B (ca. 92% in 30 min) and 2, 4-dichlorophenol (ca. 84% in 180 min) under visible light irradiation. The enhanced photocatalytic activity could be mainly ascribed to the suitable Ag<sub>3</sub>PO<sub>4</sub>/BiVO<sub>4</sub> heterojunction interface and the smaller particles of Ag<sub>3</sub>PO<sub>4</sub> compared to pure Ag<sub>3</sub>PO<sub>4</sub>/BiVO<sub>4</sub> composite can significantly reduce the silver consumption compared to the pure Ag<sub>3</sub>PO<sub>4</sub>/BiVO<sub>4</sub> composite can significantly reduce the silver consumption compared to two systems of the photocatalyte for environmental remediation.

© 2016 Elsevier Ltd. All rights reserved.

#### 1. Introduction

Semiconductor photocatalysts have attracted considerable attention for their potential applications in environmental remediation and energy production [1–3]. Among all the semiconductorbased photocatalysts,  $TiO_2$  has become an ideal photocatalyst because of its nontoxicity, higher chemical stability and oxidization features [4,5]. However,  $TiO_2$  can only respond to the UV light due to its wider bandgap (3.2 eV), which restricts its practical application. Therefore, the development of efficient visible-light-driven photocatalysts is becoming more and more attractive and a great deal of effort has been devoted into this research field.

BiVO<sub>4</sub> with a bandgap of 2.4 eV has been recognized as one of the visible-light responsive photocatalysts. Many studies have verified that BiVO<sub>4</sub> exhibits promising visible light photocatalytic activity in splitting water and decomposing pollutants [6–9]. However, the photocatalytic activity of pure BiVO<sub>4</sub> is low owing to the higher recombination rate of photoinduced electron-hole pairs; poor charge transport characteristic and weak surface

\* Corresponding author. E-mail addresses: qixuemei@shiep.edu.cn, wujiang@shiep.edu.cn (J. Wu). recent years, several strategies have been devoted to improving the photocatalytic activity of BiVO<sub>4</sub> photocatalyst, such as metal and nonmetal atoms doping [10,11], constructing heterojunction [12–14] and surface modification [15]. Coupling of two semiconductors with variable bandgaps to form heterojunction has been proven to be a feasible approach to enhance the separation efficiency of photo-induced electrons and holes. Many types of heterojunction, e.g. WO<sub>3</sub>/BiVO<sub>4</sub> [16], CuO/BiVO<sub>4</sub> [17], Bi<sub>2</sub>S<sub>3</sub>/BiVO<sub>4</sub> [18], Co<sub>3</sub>O<sub>4</sub>/BiVO<sub>4</sub> [19] and BiOCl/BiVO<sub>4</sub> [14] have been successfully fabricated and applied in photocatalysis. In spite of these, it is still necessary to explore suitable semiconductors to couple with BiVO<sub>4</sub> and remarkably improve the photocatalytic activity. In recent years, Ag<sub>3</sub>PO<sub>4</sub> has been recognized as a novel

adsorption property. Therefore, it is desirable to find a more effective way to improve the photocatalytic activity of BiVO<sub>4</sub>. In

In recent years,  $Ag_3PO_4$  has been recognized as a novel promising photocatalyst with excellent visible-light photocatalytic activity [20,21]. It has been proved that the photocatalytic activity of  $Ag_3PO_4$  is significantly higher than that of currently known visible light photocatalysts, for instance, BiVO<sub>4</sub>, Bi<sub>2</sub>WO<sub>6</sub> or N-doped TiO<sub>2</sub>. However, it usually suffers from photocorrosion and leaching in aqueous solutions under light irradiation, which limits its extensive utilization. Furthermore, the consumption of a

 $http://dx.doi.org/10.1016/j.materresbull.2016.03.025\\0025-5408/ © 2016 Elsevier Ltd. All rights reserved.$ 



Fig. 1. XRD patterns of the prepared  $BiVO_4$  (a),  $Ag_3PO_4$  (b),  $Ag_3PO_4/BiVO_4\text{--}10$  (c),  $Ag_3PO_4/BiVO_4\text{--}5$  (d) and  $Ag_3PO_4/BiVO_4\text{--}3$  (e).

large amount of silver, also strongly limits its practical applications in photocatalysis field [22–24].

Based on the above discussion, Ag<sub>3</sub>PO<sub>4</sub> can be considered to be an appropriate sensitizer to improve the photocatalytic activity of BiVO<sub>4</sub> under visible light driven by fabricating the Ag<sub>3</sub>PO<sub>4</sub>/BiVO<sub>4</sub> system. Furthermore, reducing the consumption of silver on the basis of higher visible light photocatalytic activity is also a key factor for the practical application of Ag<sub>3</sub>PO<sub>4</sub> based photocatalyst. Herein, we report a successful attempt at the fabrication of Ag<sub>3</sub>PO<sub>4</sub>/ BiVO<sub>4</sub> composite photocatalysts via an in-situ precipitation method to enhance the photocatalytic performance. The photocatalytic activity of the composite photocatalysts was investigated by the degradation of Rhodamine B (RhB) and 2, 4-dichlorophenol (2, 4-DCP) under visible light irradiation. The effect of Ag<sub>3</sub>PO<sub>4</sub> content on the degradation rate of RhB under visible light irradiation ( $\lambda > 400$  nm) in the Ag<sub>3</sub>PO<sub>4</sub>/BiVO<sub>4</sub> composites system was investigated. Meanwhile, the possible mechanism for the enhanced photocatalytic activity of Ag<sub>3</sub>PO<sub>4</sub>/BiVO<sub>4</sub> composite photocatalysts was also discussed.

#### 2. Experimental section

#### 2.1. Preparation of BiVO<sub>4</sub>

The BiVO<sub>4</sub> sample was synthesized via a simple hydrothermal method. In a typical procedure, 10 mmol Bi  $(NO_3)_3 \cdot 5H_2O$  was fully dissolved in 30 mL solvent (deionizer water: ethylene glycol = 1:1, V/V) with the addition of 3 mL HNO<sub>3</sub> solution (67%) to form solution A. Simultaneously, 10 mmol NH<sub>4</sub>VO<sub>3</sub> was fully dissolved in 30 mL the same above solvent with the addition of 2.2 mL ethylenediamine solution in another beaker to form solution B. Then the solution B was slowly dropped into the solution A. After

magnetic stirring for 30 min, the suspension was transferred into a 100 mL Teflon-lined stainless steel autoclave to perform hydrothermal process at 160 °C for 16 h. Subsequently, the autoclave was cooled to room temperature naturally. The obtained sample was filtered, washed with deionized water and absolute ethanol for several times and then dried at 80 °C for 12 h in air.

#### 2.2. Preparation of Ag<sub>3</sub>PO<sub>4</sub>/BiVO<sub>4</sub> composite photocatalyst

The Ag<sub>3</sub>PO<sub>4</sub>/BiVO<sub>4</sub> composite photocatalysts were prepared by a simple in-situ precipitation method. In the typical process, 2 mmol as-prepared BiVO<sub>4</sub> was dispersed in 50 mL distilled water and the solution was sonicated for 20 min. Then, a certain amount of AgNO<sub>3</sub> was added to the above homogeneously dispersed solution under violent stirring to dissolve AgNO<sub>3</sub> completely. Subsequently, a stoichiometric calculation amount of Na<sub>2</sub>H-PO<sub>4</sub>·12H<sub>2</sub>O previously dissolved in 50 mL distilled water was added dropwise into the above solution. Then, the solution was kept stirring violently for 5 h in a dark condition. The obtained sample was filtered, washed with deionized water and absolute ethanol for several times and then dried at 70 °C for 12 h in air. The molar ratio of Ag<sub>3</sub>PO<sub>4</sub> to BiVO<sub>4</sub> for the Ag<sub>3</sub>PO<sub>4</sub>/BiVO<sub>4</sub> composite photocatalysts is 1:15, 1:10, 1:5, 1:4 and 1:3. We designated the Ag<sub>3</sub>PO<sub>4</sub>/BiVO<sub>4</sub> composite photocatalysts with different molar ratio of  $Ag_3PO_4$  to  $BiVO_4$  as  $Ag_3PO_4/BiVO_4$ -x (x = 15, 10, 5, 4, 3, x represents the molar ratio of Ag<sub>3</sub>PO<sub>4</sub> to BiVO<sub>4</sub>). For comparison, the pure Ag<sub>3</sub>PO<sub>4</sub> photocatalyst was prepared under the same condition. The physical mixture sample was prepared by grinded the Ag<sub>3</sub>PO<sub>4</sub> and BiVO<sub>4</sub> mixture in the agate mortar according to the 1: 5 molar ratio mingle.

#### 2.3. Characterization

The crystal structure of the samples was determined by X-ray diffraction (XRD, Bruker D8 Advance, Germany) using Cu K $\alpha$  and the scanning range was  $10-80^{\circ}$  (2 $\theta$ ). The morphologies and microstructures of as-prepared samples were observed by Transmission electron microscopy (TEM, JEOL JEM-2100F, Japan) and scanning electron microscopy (SEM, FEI NOVA NANOSEM-450, America). The structure of the as-fabricated samples was measured by Fourier transform infrared spectrometer using pressed KBr pellets method (FTIR, FTIR-8400S SHIMADZU, Japan). The specific surface areas of the samples were determined by a volumetric adsorption apparatus (ASAP2010M+C, USA). The optical absorption spectra of the samples were recorded by ultraviolet-visible spectrophotometer (UV-vis, SHIMADZU UV-2550, Japan) using BaSO<sub>4</sub> as a reference. The photogenerated electron-hole pair separation efficiency of the samples was evaluated by fluorescence spectrophotometer (SHIMADZU RF-5301, Japan).

#### 2.4. Photocatalytic test

Photocatalytic activities of the as-fabricated photocatalysts were evaluated by the degradation of RhB and 2, 4-DCP aqueous

Table 1

The BET surface areas and the reaction rate constant of the samples.

| Sample name                                            | Molar ratio of Ag <sub>3</sub> PO <sub>4</sub> to BiVO <sub>4</sub> | BET surface areas $(m^2 g^{-1})$ | Reaction rate constant ( $\kappa$ , min <sup>-1</sup> ) |
|--------------------------------------------------------|---------------------------------------------------------------------|----------------------------------|---------------------------------------------------------|
| BiVO <sub>4</sub>                                      | _                                                                   | 6.30                             | 0.0098                                                  |
| Ag <sub>3</sub> PO <sub>4</sub>                        | -                                                                   | 0.39                             | 0.055                                                   |
| Ag <sub>3</sub> PO <sub>4</sub> /BiVO <sub>4</sub> -10 | 1:10                                                                | 4.25                             | 0.052                                                   |
| Ag <sub>3</sub> PO <sub>4</sub> /BiVO <sub>4</sub> -5  | 1:5                                                                 | 4.92                             | 0.087                                                   |
| Ag <sub>3</sub> PO <sub>4</sub> /BiVO <sub>4</sub> -3  | 1:3                                                                 | 4.65                             | 0.098                                                   |

Download English Version:

# https://daneshyari.com/en/article/1486946

Download Persian Version:

https://daneshyari.com/article/1486946

Daneshyari.com