Contents lists available at ScienceDirect

Materials Research Bulletin

journal homepage: www.elsevier.com/locate/matresbu

A novel single-phase white phosphor NaBaBO₃:Dy³⁺,K⁺ for near-UV white light-emitting diodes

Jianghui Zheng^a, Qijin Cheng^a, Jieyang Wu^a, Xin Cui^a, Rong Chen^a, Wenzhi Chen^a, Chao Chen^{a,b,*}

^a School of Energy Research, Xiamen University, Xiamen 361005, China ^b School of Physics and Mechanical & Electrical Engineering, Xiamen University, Xiamen, 361005, China

ARTICLE INFO

Article history Received 10 March 2015 Received in revised form 31 July 2015 Accepted 6 August 2015 Available online 10 August 2015

Keywords:

A. Inorganic compounds A: Optical materials B. Luminescence

B: Optical properties

D. Phosphors

ABSTRACT

A novel Dy³⁺-doped NaBaBO₃ white-emitting phosphor has been prepared by high temperature solidstate reaction method. The phase structure and luminescence properties of NaBaBO₃:Dy³⁺,K⁺ samples were investigated. Photoluminescence results show that the as-prepared samples could be effectively excited by near-ultraviolet (NUV) light and generate white light emission due to the ${}^{4}F_{9/2} \rightarrow {}^{6}H_{15/2}$ (blue) transition and ${}^{4}F_{9/2} \rightarrow {}^{6}H_{13/2}$ (yellow) transition of Dy³⁺ ions, respectively. The optimum doping concentration of Dy³⁺ ions in the NaBaBO₃ host was determined to be 5.0 mol% and the CIE chromaticity of the sample was determined to be (0.301, 0.308). Moreover, the mechanism of K^+ ion as a charge compensator on the improvement of photoluminescence property and the effect of temperature on the photoluminescence property of NaBaBO₃:Dy³⁺,K⁺ were investigated. Furthermore, photoluminescence decay and quantum efficiency behaviors of NaBaBO₃:Dy³⁺,K⁺ were also studied. The present work demonstrates that the NaBaBO₃:Dy³⁺,K⁺ phosphor is a potential candidate for NUV white light emitting diodes.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, phosphors based on inorganic compounds doped with divalent or trivalent rare-earth ions (Re²⁺ or Re³⁺) have attracted much attention due to their potential applications in various fields, such as white light emitting diodes (W-LEDs) [1-6], solid state lasers [7], thermo-luminescence dosimeters [8,9], field emission displays [10,11] and high energy radiation detectors [12]. In particular, W-LEDs have attracted great attention as a next generation light source due to the advantages such as higher efficiency, higher lifetime and low energy consumption [13–17]. Generally, the commercial W-LEDs are made using a blue GaNbased chip with a yellow emitting YAG:Ce³⁺ phosphor [18]. Very recently, a novel method using a near ultraviolet chip and trichromatic (blue, green and red) phosphors to generate white light, has been suggested [19,20]. However, the luminescent intensity of white light is relatively low in this way owing to the strong reabsorption of the blue light by the red and green phosphors [19]. Hence, numerous works have been dedicated to developing the novel single-phase W-LEDs phosphors, such as

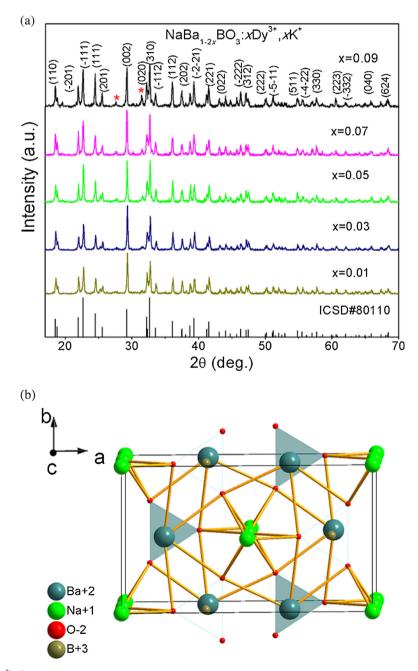
http://dx.doi.org/10.1016/i.materresbull.2015.08.007 0025-5408/© 2015 Elsevier Ltd. All rights reserved. $BaCa_2Y_6O_{12}:Eu^{3+},Dy^{3+}$ [21], $NaCaBO_3:Ce^{3+},Tb^{3+},Mn^{2+}$ [22], Sr_3Y (PO₄)₃:Eu^{2+,}Mn²⁺ [23] and Li₂SrSiO₄:Dy³⁺ [24].

Among various rare earth ions, the Dy³⁺ ion has a 4f⁹ electron configuration, and exhibits two main emissions in the visible region (one is in the 470-500 nm blue region and the other is in the 570–600 nm yellow region), which are attributed to ${}^{4}F_{9/2} \rightarrow {}^{6}H_{13/2}$ and ${}^{4}F_{9/2} \rightarrow {}^{6}H_{15/2}$ transitions of Dy³⁺ ion, respectively [19]. The yellow emission of Dy³⁺ is rather hypersensitive to the local environment, whereas the blue emission of Dy³⁺ is not very sensitive to the local environment. A white light emission with appropriate color temperature and chromaticity coordinates can be achieved through suitable adjustment of the yellow/blue (Y/B) intensity ratio in Dy³⁺-doped phosphors [25]. Because of this, Dy³ ⁺-doped phosphors have been treated as promising single-phase white emitting materials.

Nowadays, among a large number of inorganic compounds, rare-earth doped borate phosphors have attracted much attention due to their advantages of a low synthesis temperature, high luminous efficiency, high color purity and high chemical stability [26-30]. In particular, a series of rare earth doped borate phosphors with a general formula $MNBO_3$ (M = Li, Na, K; N = Ca, Sr, Ba) were widely reported, such as blue-emitting NaSrBO₃:Ce³⁺ [31], green-emitting NaSrBO₃:Tb³⁺,Li⁺ [32], orange-red emitting NaCaBO₃:Sm³⁺ [27], red-emitting LiBaBO₃:Sm³⁺ [33], single-phase

CrossMark

^{*} Corresponding author at: School of Energy Research, Xiamen University, Xiamen 361005, China. Tel.: +86 5922182458; fax: +86 5922182458. E-mail address: cchen@xmu.edu.cn (C. Chen).


white emitting NaCaBO₃:Ce³⁺,Tb³⁺,Mn²⁺[22] and LiBaBO₃:Ce³⁺,Eu² ⁺ [34], and so forth.

The structure of NaBaBO₃ was firstly reported by Tu and Keszler in 1995 [35]. However, to the best of our knowledge, until recently, there is no report about the luminescence property of Dy^{3+} -doped NaBaBO₃. In this paper, the NaBaBO₃: Dy^{3+} phosphor has been successfully prepared by solid state reaction method at 850 °C and K⁺ ion was used as a charge compensator. The phase structure and luminescence properties of NaBaBO₃: Dy^{3+} were well studied. The influence of the concentration of Dy^{3+} on luminescent intensity and Y/B intensity ratio, the concentration quenching mechanism, the charge compensation effect, the temperature-dependent property, photoluminescence decay and quantum efficiency behaviors of NaBaBO₃: Dy^{3+} , K^+ were also studied. The results indicate that NaBaBO₃: Dy^{3+} , K^+ is a potential single-phase white emitting material for the application in near-UV white lightemitting diodes.

2. Experimental

2.1. Synthesis

A series of NaBa_{1-x}BO₃:xDy³⁺ (NBB:Dy³⁺) (x = 0.01, 0.03, 0.05, 0.07, and 0.09) and NaBa_{1-2x}BO₃:xDy³⁺,xK⁺ (NBB:Dy³⁺, K⁺) (x = 0.01, 0.03, 0.05, 0.07, 0.09, 0.11, and 0.13) samples were prepared by solid state reaction method at 850 °C. The starting materials BaCO₃ (AR), H₃BO₃ (AR), Na₂CO₃ (AR), K₂CO₃ (AR) and Dy₂O₃ (3N) were weighed and ground together in an agate mortar. Then the mixture was transferred to a corundum crucible and preheated at 400 °C for 1 h, and subsequently further sintered in

Fig. 1. (a) XRD patterns of NBB:Dy³⁺, K⁺ (x = 0.01, 0.03, 0.05, 0.07 and 0.09) phosphors. The standard data card ICSD 80110 for NaBaBO₃ is provided as a reference. (b) Crystal structure of NaBaBO₃ viewed along the *c*-axis.

Download English Version:

https://daneshyari.com/en/article/1487166

Download Persian Version:

https://daneshyari.com/article/1487166

Daneshyari.com