

Materials Research Bulletin

journal homepage: www.elsevier.com/locate/matrix \mathcal{L}

Effect of Al_2O_3 insertion on the electrical properties of SrTiO₃ thin films: A comparison between Al_2O_3 -doped SrTiO₃ and SrTiO₃/Al₂O₃/SrTiO₃ sandwich structure

Ji-Hoon Ahn $^{\rm a}$, Ja-Yong Kim $^{\rm b}$, Seong-Jun Jeong $^{\rm a}$, Se-Hun Kwon $^{\rm c,d,*}$

^a Samsung Advanced Institute of Technology, Samsung Electronics Corporation, Yongin-Si, Gyeonggi-Do 446-712, Republic of Korea ^bDepartment of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea

^c National Core Research Center for Hybrid Materials Solutions , Pusan National University, 30 Jangjeon-Dong Geumjeong-Gu, Busan 609-735, Republic of Korea d School of Materials Science and Engineering, Pusan National University, 30 Jangjeon-Dong Geumjeong-Gu, Busan 609-735, Republic of Korea

ARTICLE INFO

Article history: Received 20 May 2014 Received in revised form 4 November 2014 Accepted 3 December 2014 Available online 4 December 2014

Keywords:

A. Oxides A. Thin flims

B. Vapor deposition D. Dielectric properties

ABSTRACT

The effect of Al_2O_3 insertion on the electrical properties of SrTiO₃ films is systemically investigated in metal–insulator–metal (MIM) capacitor because $SrTiO₃$ films with a high dielectric constant generally suffer from high leakage current problem caused by grain boundaries and a narrow band gap. To find an effective Al_2O_3 insertion method, Al_2O_3 is inserted into SrTiO₃ thin films by two different ways. The first method is doping of Al_2O_3 in SrTiO₃ thin films and the second method is sandwiching a nanometer-thick $A₂O₃$ layer between SrTiO₃ thin films. With respect to leakage blocking properties, the leakage current of Al_2O_3 -doped SrTiO₃ films is effectively reduced when the SrTiO₃ film becomes amorphous by doping. In case of the SrTiO₃/Al₂O₃/SrTiO₃ structure, an Al₂O₃ layer with a thickness of more than 1.19 nm effectively acts as a leakage current blocking layer without $SrTiO₃$ amorphization. Moreover, the degradation of the dielectric properties of Al₂O₃-doped SrTiO₃ films is more severe, caused by structural degradation, than of $SrTiO₃/Al₂O₃/SrTiO₃$ structured films. Therefore, compared with $Al₂O₃$ -doped SrTiO₃, a more than two times higher value (\sim 45) of the dielectric constant can be obtained in the SrTiO₃/Al₂O₃/SrTiO₃ structured films with a similar leakage current density of 10^{-7} A/cm².

 $©$ 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Perovskite strontium titanate (SrTiO₃) thin films have been widely investigated in view of electronic applications such as ferroelectric film capacitors [\[1\],](#page--1-0) tunable resonant circuits [\[2\]](#page--1-0), nonvolatile memories [\[3\]](#page--1-0), optoelectronics [\[4\]](#page--1-0) and, especially, high dielectric capacitors in dynamic random access memories [\[5](#page--1-0)–7] owing to their excellent dielectric properties. Excellent dielectric properties of $SrTiO₃$ films can be achieved if these films have a perovskite crystal structure. However, dielectric thin films with a high crystallinity generally have a lot of grain boundaries that act as conduction paths of leakage current. Therefore, $SrTiO₃$ thin films with a high dielectric constant suffer from high leakage current owing to internal grain boundaries and/or cracks [\[8\]](#page--1-0) and, moreover, the narrow band gap of SrTiO₃ (about 3.3 eV) could also cause a high

E-mail address: sehun@pusan.ac.kr (S.-H. Kwon).

<http://dx.doi.org/10.1016/j.materresbull.2014.12.012> 0025-5408/ \circ 2014 Elsevier Ltd. All rights reserved. leakage current [\[9\]](#page--1-0). This leakage current problem challenges the practical application of $SrTiO₃$ films in microelectronic industry, especially with regard to MIM applications.

To improve the leakage current properties of high-k dielectrics, the introduction of various combinations of current barrier materials such as Al_2O_3 , La₂O₃, and SiO₂ have been proposed in forms of stacked structures, intermixing structures, sandwich structures, and others [10–[13\].](#page--1-0) Generally, the method of reducing the leakage current by the insertion of a current barrier material may accompany a problem of decreasing the capacitance, because leakage current barrier materials have relatively low dielectric constants. Therefore, it is necessary to investigate the variation of the electrical properties of a high-k material upon insertion of a current barrier material for various insertion methods. However, most of the researches have focused on the effect of an individual specific structure resulting in a lack of a comparative study between different structure combinations of high-k materials and current barrier material systems.

In this paper, the effect of alumina $(Al₂O₃)$ insertion on the electrical properties of $SrTiO₃$ films was systemically investigated. To examine the variation of the electrical properties of Al_2O_3 -added

^{*} Corresponding author at: School of Materials Science and Engineering, Pusan National University, 30 Jangjeon-Dong Geumjeong-Gu, Busan 609-735, Republic of Korea. Tel.: +82 51 510 3775; fax: +82 51 518 3360.

 $SrTiO₃$ films, $Al₂O₃$ was introduced into $SrTiO₃$ thin films by two different ways. The first method for reducing leakage current is doping of Al_2O_3 in SrTiO₃ thin films. Since Al_2O_3 films have excellent leakage current properties, it is anticipated that Al_2O_3 -doped SrTiO₃ films will exhibit a reduced leakage current. The second method is the insertion of an Al_2O_3 layer with a thickness of the order of a few nanometer in between SrTiO₃ thin films (sandwiching the Al_2O_3 layer between $SrTiO₃$) as a leakage current blocking layer. It is expected that the thin Al_2O_3 layer with amorphous structure might act as a leakage current blocking layer in a crystalline $SrTiO₃$ thin film because Al_2O_3 has a high crystallization temperature (>900 °C) and a large band gap (about 8.7 eV) with a corresponding low leakage current [\[14\].](#page--1-0)

2. Experimental details

 Al_2O_3 -added SrTiO₃ thin films were deposited on a SrRuO₃ seed layer using plasma-enhanced atomic layer deposition (PEALD) adopting a supercycle concept $[15]$. Before the Al_2O_3 -added SrTiO₃ films were deposited, the SrRuO₃ seed layer was prepared by a 2.7 nm SrO layer on a 30-nm-thick bottom electrode of $RuO₂$ and post-annealing, as explained in an earlier report [\[16\]](#page--1-0). The deposition of SrO layers on top of $RuO₂/SiO₂/Si$ substrates by PEALD was followed by 10 min of annealing for a reaction of SrO and RuO₂ to form a SrRuO₃ layer under O_2 ambient at a temperature of 600 °C. Next, two types of Al_2O_3 -added SrTiO₃ thin films were formed on the $SFRuO₃$ seed layer at a deposition temperature of 225 \degree C and a pressure of 3 Torr. The used precursors were Sr(DPM)₂ [Sr(C₁₁H₁₉O₂)₂] and TTIP [Ti(O_i-C₃H₇)₄] for SrTiO₃ deposition and TMA $[A(CH_3)_3]$ for Al_2O_3 addition. Oxygen plasma was used as an oxidant. $Sr(DPM)_2$ was dissolved in butyl acetate (0.2 M) and supplied to the reaction chamber by a liquid delivery system. TTIP vapor was carried in argon gas though a bubbler at 60° C and TMA vapor was supplied without carrier gas to the reaction chamber while maintaining a vessel temperature of 30° C. At a converged regime, the saturated growth rates of SrO , $TiO₂$, and Al_2O_3 films were 0.054, 0.036, and 0.11 nm/cycle, respectively. One supercycle for $SrTiO₃$ deposition was consisted of six $TiO₂$ cycles and seven SrO cycles in order to obtain a stoichiometric $SrTiO₃$ films $(Sr:T = 1:1.03)$.

To investigate the impact of the structure of the leakage current barrier material on the electrical properties of Al_2O_3 -added SrTiO₃ films, Al_2O_3 was inserted in two different ways, as shown Fig. 1 and Table 1. The first method is doping of Al_2O_3 in SrTiO₃ thin films $(Al_2O_3$ -doped SrTiO₃) and the second method is sandwiching an Al_2O_3 layer between bottom and top SrTiO₃ thin films (SrTiO₃/ $Al_2O_3/SrTiO_3$, sandwich). Applying the first method, a cycle for Al_2O_3 was periodically inserted during the SrTiO₃ deposition by varying the number of Al_2O_3 cycles (denoted by 'n') from 0 to 21. Concerning the second method, the process sequence was as follows. First, 10-nm-thick SrTiO₃ films were deposited on SrRuO₃ seed layers. Then, the Al_2O_3 layers were deposited on top of the $SrTiO₃$ films in a continuous manner by varying the number of deposition cycles ('n') from 5 to 20 (corresponding to a thickness range of about $0.6-2.4$ nm). After that, 5-nm-thick SrTiO₃ films were deposited on the Al_2O_3 blocking layers; consequently, the sandwich structure of $SrTiO₃/Al₂O₃/SrTiO₃ films was fabricated.$ For both methods, the number of supercycles (denoted by 'm') for the deposition of $SrTiO₃$ was fixed to 21 (one supercycle consisted of six $TiO₂$ and seven SrO cycles.) which resulted in 15-nm-thick stoichiometric SrTiO₃ films $[15]$. For crystallization, the asdeposited films underwent a rapid thermal annealing at 600° C for 10 min under N_2 ambient. The film thickness was measured at a wavelength of 632.5 nm using an ellipsometer (Gaertner L116C) and X-ray diffraction (XRD, Rigaku) analysis using Cu K α radiation $(\lambda = 1.5405 \text{ Å})$ was carried out to investigate the crystal structures

Fig. 1. Schematic diagrams of two different types of Al_2O_3 -added SrTiO₃ films and the corresponding PEALD cycle sequences; (a) doping of Al_2O_3 in SrTiO₃ films $(Al_2O_3$ -doped SrTiO₃), (b) sandwiching an Al_2O_3 layer between a bottom and a top SrTiO₃ film (SrTiO₃/Al₂O₃/SrTiO₃). The letter *n* and *m* denotes the number of Al₂O₃ $cycles$ and $SrTiO₃$ supercycles, respectively.

of the Al_2O_3 -added SrTiO₃ thin films. To examine the electrical properties, 100-nm-thick Pt dots deposited by sputtering with a diameter of 160 μ m were used as a top electrode and the dielectric constant was measured using a C–V analyzer (Keithley 590) at a frequency of 1 MHz.

3. Results and discussion

[Fig. 2](#page--1-0) demonstrates the variation of the total thickness of Al_2O_3 -added SrTiO₃ films as a function of the number of Al_2O_3 cycles while keeping fixed the number of $SrTiO₃$ supercycles at 21. The total thickness linearly increased with the number of Al_2O_3 cycles and the deposition rates of Al_2O_3 in SrTiO₃ films obtained from the slope of the graph were very similar for direct doping and the sandwich structure (0.121 nm/cycle for doping and 0.119 nm/ cycle for the sandwich structure). This means that the deposited

*STO: one supercycle for SrTiO₃ deposition; AO: one cycle for Al_2O_3 deposition.

Download English Version:

<https://daneshyari.com/en/article/1487556>

Download Persian Version:

<https://daneshyari.com/article/1487556>

[Daneshyari.com](https://daneshyari.com/)