Contents lists available at ScienceDirect

Materials Research Bulletin

journal homepage: www.elsevier.com/locate/matresbu

Electrodeposited manganese dioxide nanostructures on electro-etched carbon fibers: High performance materials for supercapacitor applications

Sayed Habib Kazemi^{a,b,*}, Mostafa Ghaem Maghami^a, Mohammad Ali Kiani^c

^a Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran

^b Center for Research in Climate Change and Global Warming (CRCC), Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran

^c Chemistry & Chemical Engineering Research Center of Iran, P.O. Box 14335-186, Tehran, Iran

ARTICLE INFO

Article history: Received 31 May 2014 Received in revised form 26 July 2014 Accepted 20 August 2014 Available online 23 August 2014

Keywords: Electrochemical properties Nanostructures Electron microscopy Impedance spectroscopy

ABSTRACT

In this article we introduce a facile, low cost and additive/template free method to fabricate high-rate electrochemical capacitors. Manganese oxide nanostructures were electrodeposited on electro-etched carbon fiber substrate by applying a constant anodic current. Nanostructured MnO_2 on electro-etched carbon fiber was characterized by scanning electron microscopy, X-ray diffraction and energy dispersive X-ray analysis. The electrochemical behavior of MnO_2 electro-etched carbon fiber electrode was investigated by electrochemical techniques including cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscopy. A maximum specific capacitance of 728.5 Fg⁻¹ was achieved at a scan rate of 5 mV s^{-1} for MnO_2 electro-etched carbon fiber electrode. Also, this electrode showed exceptional cycle stability, suggesting that it can be considered as a good candidate for supercapacitor electrodes.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Electrochemical capacitors, also known as supercapacitors, are of the most promising energy strong devices that bridge the gap between batteries and conventional capacitors [1]. Delivering high energy and power densities make supercapacitors versatile devices with potential applications as power sources in a wide variety of applications. Carboneous materials, transition-metal oxides and conducting polymers are the most employed materials for electrochemical supercapacitors [2–8].

Among different transition metal oxides studied so far; hydrous forms of ruthenium oxide are the most promising material for supercapacitor applications. They provide relatively high specific capacitance with remarkable cycleability [9,10]. However, the practical application and commercialization of RuO_2 has slowed down because of its high cost and toxicity [11]. Thus, research has been focused on developing low-cost transition metal oxides including MnO_2 , Co_3O_4 , NiO, Fe₃O₄, VO_x, and TiO₂[3,12–17]. Amongst them, manganese oxide has attracted intense attention

E-mail address: habibkazemi@iasbs.ac.ir (S.H. Kazemi).

 $http://dx.doi.org/10.1016/j.materresbull.2014.08.032\\0025-5408/ © 2014 Elsevier Ltd. All rights reserved.$

since it is an inexpensive and environmentally friendly material [18–24]. Manganese dioxide is one of the most stable manganese oxides with excellent physical and chemical properties under ambient conditions. A high capacitance $(1370 \, \text{Fg}^{-1})$ is expected for MnO₂-based supercapacitor electrodes [25]. Such a high capacitance can be obtained by increasing the surface area and the material utilization. Direct deposition of manganese oxide on a carbon host, such as active carbon, graphite, carbon nanotubes and mesoporous carbon have been investigated to enhance the material utilization [26–32].

Electrochemical deposition is an exceptional technique developed to fabricate MnO_2 nanostructures, because of its opportunity to control the thickness and the structure of the deposited materials by changing several factors including electrolyte, electrodeposition current or voltage, and temperature [6,13].

Carbon fiber (CF) substrate offers advantages include high conductivity, chemical stability and three dimensional structures, which made it as an excellent substrate for supercapacitor electrode [2]. In this report, we report the fabrication of MnO₂ nanostructures on electro-etched carbon fiber surface (MnO₂-ECF). It is noteworthy that the use of electro-etched carbon fibers is proposed because of the porous three-dimensional structure with large amount of interior channels, which improves the diffusibility of electrolyte ions [2].

CrossMark

^{*} Corresponding author at: Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran.

2. Experimental

The CF paper was purchased from Toray Carbon Fibers Inc. (America), with the average diameter of 8 μ m for each carbon fiber. All chemicals were of analytical grade and were purchased from Sigma–Aldrich Company. CF substrate was electrochemically etched (ECF) by applying a constant potential of 2 V (using Autolab potentiostat–galvanostat 101, Eco Chemie, BV, Netherlands) for 10 min in a 1 M of H₂SO₄ electrolyte solution [2].

Prior to anodic deposition, the electro-etched carbon fiber paper was washed with acetone, and then rinsed with deionized water. Manganese oxide nanostructures were deposited on ECF substrate by applying an anodic current of $0.5 \,\mathrm{mA\,cm^{-2}}$ in a solution of 0.1 M manganese acetate and 0.1 M sodium sulfate for 30 s at room temperature. After electrodeposition, the MnO₂-ECF electrode was rinsed several times by deionized water and annealed at 300 °C for 1 h in air.

Electrochemical measurements were carried out in a three electrode cell comprised of an Ag/AgCl reference electrode, platinum wire counter electrode and MnO₂-ECF working electrode, in a 1 M solution of Na₂SO₄. The surface morphology of the electrodeposited manganese oxide was studied by field emission scanning electron microscope (FESEM, Carl Zeiss Σ IGMA) equipped with EDX analyzer. The crystal structure of MnO₂-coated electrode was examined by a Bruker Advance D8 spectrometer with a Cu target (Cu-K α line). Diffraction data were collected over 2θ , ranging from 10° to 90°.

Galvanostatic charge/discharge (CD), cyclic voltammetry (CV), and cycle-life stability experiments were performed in a potential range of 0-1V vs. Ag/AgCl at room temperature. Also, the electrochemical characteristics of MnO₂-ECF electrodes were further studied by ac-impedance measurements (EIS). AC-impedance measurements were performed under open-circuit condition by a Zahner/Zennium potentiostat–galvanostat (Zahner, Germany). AC perturbation amplitude of 10 mV was imposed on the opencircuit potential in the frequency range of 100 kHz to 0.01 Hz.

3. Results and discussion

3.1. Surface characterization of MnO₂-ECF

Firstly, ECF substrate was obtained by electro-etching in H₂SO₄. Scanning electron microscopy images (SEM), before and after electro-etching, revealed a densely packed and randomly oriented structure for CF and ECF substrates (Figure S-1 and S-2, supporting information). As seen in Figure S-1 and S-2, this randomly oriented structure provides three-dimensional porous structures. The porous structure of CF is expected to enhance the accessibility of electrolyte ions to this structure [2]. Figure S-2 shows that after electro-etching, new channels are formed on the fiber surface, which results in a considerable increase in substrate surface area. Fig. 1a and b presents SEM images of electrodeposited MnO₂ nanostructures on ECF surface (different magnification). The average thickness of electrodeposited MnO₂ nanostructures was estimated to be 20 nm. Additionally, a low magnification SEM image of MnO₂-ECF is provided as supporting information to show the even distribution of MnO₂ nanostructures on the carbon fibers (Figure S-3). It can be seen that MnO₂ nanostructures created 3D

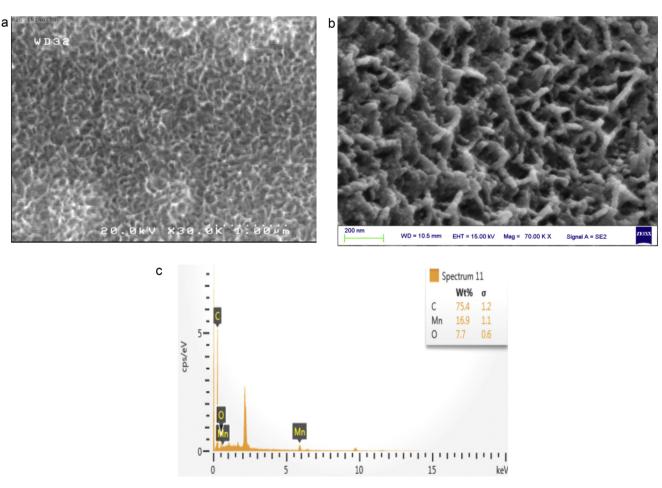


Fig. 1. SEM images of (a) and (b) MnO₂-ECF at two different magnification, and (c) EDX analysis of MnO₂-ECF.

Download English Version:

https://daneshyari.com/en/article/1487822

Download Persian Version:

https://daneshyari.com/article/1487822

Daneshyari.com