FISEVIER

Contents lists available at ScienceDirect

Materials Research Bulletin

journal homepage: www.elsevier.com/locate/matresbu

Influence of $6s^2$ lone pair electrons of Bi^{3+} on its preferential site occupancy in fluorapatite, $NaCa_3Bi(PO_4)_3F$ – An insight from Eu^{3+} luminescent probe

N. Lakshminarasimhan*, U.V. Varadaraju

Materials Science Research Centre and Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India

ARTICLE INFO

Article history: Received 20 June 2013 Received in revised form 5 June 2014 Accepted 25 August 2014 Available online 27 August 2014

Keywords:

A. Apatites

B. Luminescence

C. Infrared spectroscopy

C. X-ray diffraction

D. Crystal structure

ABSTRACT

Eu $^{3+}$ luminescence was used as a structural probe in understanding the preferential site occupancy of lone pair cation, Bi^{3+} , in fluorapatite by comparing the photoluminescence (PL) emission spectral features with that of in analogous La^{3+} based fluorapatite. The fluorapatites, $\mathrm{NaCa_3Bi_{0.95}Eu_{0.05}(PO_4)_3F}$ and $\mathrm{NaCa_3La_{0.95}Eu_{0.05}(PO_4)_3F}$, were synthesized by conventional high temperature solid state reaction method and characterized by powder X-ray diffraction (XRD) and FT-IR spectroscopy. The Eu^{3+} PL results revealed a difference in the emission spectral features in $\mathrm{NaCa_3Bi_{0.95}Eu_{0.05}(PO_4)_3F}$ and $\mathrm{NaCa_3La_{0.95}Eu_{0.05}(PO_4)_3F}$. This difference in Eu^{3+} PL emission can be attributed to the difference in its site occupancy in the studied fluorapatites.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Apatites with the general formula $M_5(TO_4)_3X$ [M=alkaline earth and rare earth elements, T = P, As, Si and Ge; X = F, Cl, OH and O] find potential applications as bone materials, laser hosts, oxide ion conductors, etc. [1-4]. The crystal chemistry of apatites has been well established and apatite structure is flexible to accommodate different combinations of monovalent and multivalent ions (e.g. Na+, Pb2+, Ln3+, Bi3+ etc.) in the M site with minor alterations in the space group symmetry [1,5-8]. The apatite unit cell contains two types of M sites namely, M(I) (Wyckoff 4f position) and M(II) (Wyckoff 6h position) with 9- and 7-fold coordination, respectively, as shown in Fig. 1 for Ca₅(PO₄)₃F (space group P6₃/m). The fluorine atom is coordinated exclusively to the Ca(II) atom. The oxygen atoms that are coordinated to Ca(I) and Ca (II) atoms are from -PO₄ group. The M(I) coordination environment has a C3 symmetry and the M(II) site has a distorted coordination environment with C_s symmetry. Substantial amount of structural information is available for lone pair cation, Pb2+, containing fluor- and hydroxyapatites [9-11]. However, the

E-mail addresses: nlnsimha@gmail.com, laksnarasimhan@cecri.res.in (N. Lakshminarasimhan).

available structural information on Bi³⁺ based apatites is very limited. Among the various apatites, only a few bismuth containing apatites are known [1]. The crystal chemistry of Bi³⁺ based compounds is quite interesting. Due to the presence of the 6s² lone pair of electrons, Bi³⁺ induces a structural distortion and this results in the ferroelectric, piezoelectric and non-linear optical properties as observed in various Bi³⁺ based compounds [12]. It will be of interest to synthesize Bi³⁺ containing apatites where a distorted coordination environment is already present. The 6s² lone pair of electrons of Bi³⁺ may have a strong role in determining the site occupancy of Bi³⁺ in apatites.

Information about the local site symmetry can be obtained by luminescent structural probes [13]. Due to its hypersensitive nature, Eu^{3+} luminescence has been extensively utilized as a structural probe, especially in apatites [14–18]. In our earlier work, Eu^{3+} luminescence was used as a structural probe in elucidating the site occupancy of Bi^{3+} in phosphate oxyapatite $BiCa_4(PO_4)_3O$ and also in newly synthesized silicate oxyapatites, $ALa_3Bi(SiO_4)_3O$ and $ALa_2Bi_2(SiO_4)_3O$ [A = Ca, Sr and Ba] [19,20]. Using Eu^{3+} luminescence we found that the crystal structures of these Bi^{3+} containing silicate oxyapatites are different from that of ideal apatites and they could be structurally related to the previously reported $BiCa_4(VO_4)_3O$ with apatite-related structure [7]. The present study aims at elucidating the preferential site occupancy of Bi^{3+} in fluorapatite by comparing the Eu^{3+} luminescence in $NaCa_3Bi$ ($PO_4)_3F$ and $NaCa_3La(PO_4)_3F$ where La^{3+} without any lone pair of electrons is nearly similar in size to that of Bi^{3+} . The difference in

^{*} Corresponding author. Present address: Functional Materials Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630 006, Tamil Nadu, India. Tel.: +91 4565 241292; fax: +91 4565 227779.

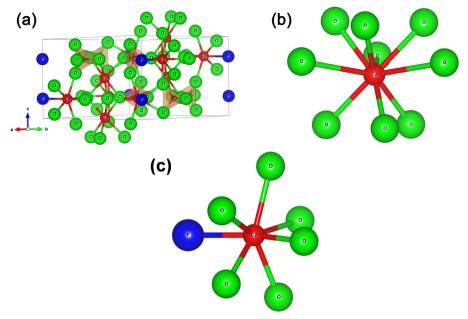


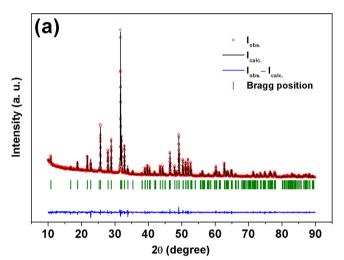
Fig. 1. (a) The unit cell of fluorapatite $Ca_5(PO_4)_3F$. (b) The Ca(I) and (c) the Ca(II) coordination environments in $Ca_5(PO_4)_3F$ are also shown to reveal the difference in their surroundings (colour online).

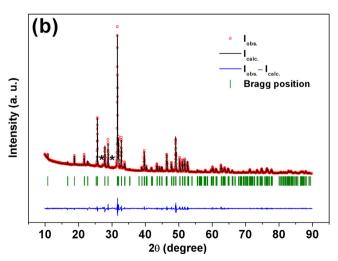
Eu³⁺ PL emission is expected to reveal the difference in its site occupancy which can be directly related with the preferential site occupancy of Bi³⁺ in the studied fluorapatite.

2. Experimental

2.1. Synthesis

The compounds NaCa₃Bi_{0.95}Eu_{0.05}(PO₄)₃F and NaCa₃La_{0.95}Eu_{0.05} (PO₄)₃F were synthesized by conventional high temperature solid state reaction method. The reactants were high purity Bi₂O₃ (Cerac, 99.9%), La₂O₃ (Indian Rare Earths, 99.9%), CaCO₃ (Cerac, 99.95%), Eu₂O₃ (Indian Rare Earths, 99.9%), NaF (Sigma–Aldrich, 99%) and NH₄H₂PO₄(Merck, 99%). La₂O₃ was preheated at 1100 °C overnight in order to remove the adsorbed moisture and carbonate impurities. Stoichiometric quantities of the reactants were thoroughly ground and heated at 300 °C for 6 h, 700 °C for 12 h, 950 °C for 24 h and finally at 1100 °C for 24 h with intermittent grindings.


2.2. Characterization


The compounds were characterized by powder X-ray diffraction (XRD) (D8 Advance, Bruker) using Cu-K α radiation at room temperature. Rietveld profile matching by Le Bail method was carried out for both NaCa₃Bi_{0.95}Eu_{0.05}(PO₄)₃F and NaCa₃La_{0.95}Eu_{0.05} (PO₄)₃F using FullProf program [21]. FT-IR spectra were recorded using KBr disc technique (IFS 66V, Bruker). Photoluminescence excitation and emission spectra were recorded for the powder samples at room temperature using a spectrofluorometer (FP-8500, Jasco).

3. Results and discussion

3.1. Phase formation

The hexagonal fluorapatite phase formation of NaCa₃Bi_{0.95}Eu_{0.05}(PO₄)₃F was confirmed by comparing its powder XRD pattern with the standard pattern of NaCa₃Bi(PO₄)₃F (ICDD # 00-033-1220). The XRD pattern of NaCa₃La_{0.95}Eu_{0.05}(PO₄)₃F is similar to that of bismuth analogue. However, no standard pattern

Fig. 2. Observed (red circles), calculated (black line) and difference profile (blue line in the bottom) of (a) $NaCa_3Bi_{0.95}Eu_{0.05}(PO_4)_3F$ and (b) $NaCa_3La_{0.95}Eu_{0.05}(PO_4)_3F$; the unidentified reflections in (b) are marked with the symbol*. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Download English Version:

https://daneshyari.com/en/article/1487835

Download Persian Version:

https://daneshyari.com/article/1487835

<u>Daneshyari.com</u>