

Contents lists available at ScienceDirect

Materials Research Bulletin

journal homepage: www.elsevier.com/locate/matresbu

Synthesis and photoluminescence of blue LED excitable La₄Ti₉O₂₄:Eu³⁺ phosphor for red-light emission

Bin Gao^a, Jing Yin^b, Zhi-Yong Mao^{a,c}, Da-Jian Wang^a, Le-Xi Zhang^a, Li-Jian Bie^{a,*}

^a School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China

^b School of Environmental Science & Safety Engineering, Tianjin University of Technology, Tianjin 300384, China

^c Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China

ARTICLE INFO

Article history: Received 3 March 2013 Received in revised form 19 August 2013 Accepted 13 December 2013 Available online 19 December 2013

Keywords: A. Inorganic compounds A. Optical materials B. Chemical synthesis

- C Electron microscopy
- D. Luminescence

1. Introduction

White light-emitting diodes (W-LEDs) are considered as the next generation solid-state lighting devices owing to the advantages of energy saving, high efficiency, environmental friendly, and long lifetime [1]. At present, most commercial W-LEDs products are fabricated by combining GaN-based blue LED (440-465 nm) and YAG:Ce (YAG) yellow-emitting phosphor. However, this kind of white light has poor color rendering due to the color deficiency in the red region [2]. One way to improve the color rendering index for this GaN chip/YAG combination can be achieved by adding redlight component. The other patterns to generate white light with high color rendering can be achieved through tri-color mix with red, green and blue phosphors as pumped by InGaN-based near-UV LED (370-410 nm), or with red, green phosphors pumped by blue LED [3]. Up to now, most commercial red phosphors are based on Eu^{2+} -doped binary alkaline earth sulfides [4] or Eu^{3+} -doped Y_2O_2S [5], the drawbacks of which are their chemical instability, short lifetime and low efficiency [6]. Therefore, developing of red phosphor with high efficiency, excellent chemical stability, and efficient absorption in blue light (around 460 nm) or near-UV light (around 400 nm) has attracted wide interests.

ABSTRACT

Eu³⁺ activated La₄Ti₉O₂₄ phosphors were prepared by firing precursors from sol–gel method. Under the excitation of 465 nm light, the phosphor with optimized concentration at 3% shows strong red light emission peaked at 613 nm with high color purity owing to ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ emission of Eu³⁺. When adequate amount of either Si⁴⁺ or Bi³⁺ is incorporated in La₄Ti₉O₂₄ host, the photoluminescence intensity of asprepared La₄Ti₉O₂₄:Eu³⁺ phosphor can be enhanced by 12% and 19.4%, respectively. As the (La_{0.97}Eu_{0.03})₄Ti₉O₂₄ is pumped with blue-light, high purity red emission with chromaticity coordinates (0.6380, 0.3616) is achieved at the optimized condition. This phosphor might be applied in the solid-state white light emission devices based on blue light-emitting diodes.

© 2013 Elsevier Ltd. All rights reserved.

Recently, lanthanide doped La–Ti–O system, such as $La_2Ti_2O_7:Pr^{3*}$ [7], (La, $Pr)_2Ti_2O_7$ [8] and ($La_{0.95}Eu_{0.05})_2Ti_2O_7$ [9], have been investigated for their up-conversion and red-emitting properties. As a member of La–Ti–O system, $La_4Ti_9O_{24}$ consists of a complex network of distorted, octahedral-coordinated titanium sharing corners or edges, linked by two six-coordinated and one eight-coordinated lanthanum ions [10], the La^{3+} sites in this compound have low symmetry, which might be a good host for lanthanide ions. As Eu^{3+} ions usually show a typical ${}^5D_0-{}^7F_2$ line-shaped emission around 612 nm when occupying lattice sites without centro-symmetry [11], indicating that $La_4Ti_9O_{24}:Eu^{3+}$ is suitable to be a red-light-emitting phosphor to compensate red component for white-light.

In this paper, Eu^{3+} activated $La_4Ti_9O_{24}$ red-light emitting phosphor samples, which could be excited by blue light, were prepared by firing precursors from sol–gel method. The photo-luminescence of the phosphor and the influence of Si⁴⁺ or Bi³⁺ incorporation on the emission intensities of the phosphors were investigated.

2. Experimental

Sol-gel method has many advantages over solid-state method, such as good homogeneity, lower sintering temperature, and narrow particle size distribution, which are all beneficial to increase the efficiency of phosphor [12]. La₄Ti₉O₂₄:Eu³⁺ phosphors were prepared by sol-gel method: La(NO₃)₃·6H₂O (A.R.) and

^{*} Corresponding author. Tel.: +86 22 60216800; fax: +86 22 60216800. *E-mail addresses*: ljbie@pku.org.cn, ljbie@tjut.edu.cn (L.-J. Bie).

^{0025-5408/\$ -} see front matter © 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.materresbull.2013.12.024

Eu(NO₃)₃·6H₂O (A.R.) were dissolved in acetic acid (A.R.) to form solution A; Ti(C₄H₉O)₄ (A.R.) was dissolved in anhydrous ethanol (A.R.) to obtain solution B; then stoichiometric amount of solution A was added to solution B under vigorous stirring to produce a clear solution, after that, the as-prepared solution was kept at 80 °C to obtain a transparent gel. The obtained gel was heat-treated at 400 °C for 2 h, and annealed for 2 h subsequently at a temperature range from 800 °C to 1000 °C to obtain phosphor samples. Stoichiometric amount of Si(OC₂H₅)₄ (A.R.) was added into solution B for the co-doping of Si⁴⁺, and the co-doping of Bi³⁺ was achieved by adding stoichiometric amount of Bi(NO₃)₃·5H₂O (A.R.) to solution A.

X-ray diffractions (XRD) were examined on Rigaku D/MAX-2500 using Cu-K_{α} radiation. The morphology of the samples was characterized using a JEOL JEM-2100 transmission electron microscope (TEM) operated at 200 kV. The photoluminescence measurements were carried out using a Shimadzu RF-5301 PC fluorescence spectrophotometer equipped with a 150 W xenon lamp as the excitation source (parameters of excitation and emission slit widths were set to be 1.5 nm). The colorimetry parameters were measured on a PMS-50 Plus UV-Vis-near IR spectro-photocolorimeter (Everfine, China). The lifetimes were measured on a Horiba Jobin Yvon FL3-2-iHR320 fluorescence spectrophotometer. All measurements were carried out at room temperature.

3. Results and discussion

The X-ray diffraction (XRD) patterns of La₄Ti₉O₂₄:Eu³⁺ powders obtained after heating the dried gels at different temperature for 2 h are shown in Fig. 1. The diffraction peaks of samples heated at 800 °C and 900 °C match well with the patterns in JCPDS No. 83-0946 of La₄Ti₉O₂₄. As the calcination temperature increases to 1000 °C, the intensity of the diffraction peaks increases, and the half width tends to be narrowed, revealing that a high purity, well crystallized La₄Ti₉O₂₄:Eu³⁺ sample is obtained. Therefore, the sample obtained at the firing temperature of 1000 °C is chosen to discuss the luminescence property in the experiment.

As can be seen from the transmission electron microscopy (TEM) image of $La_4Ti_9O_{24}$: Eu^{3+} sample in Fig. 2, the particles of the sample are uniform and in a spherical morphology with a mean size of 100 nm, which might be a good candidate to form phosphor

Fig. 1. XRD patterns of as-prepared La₄Ti₉O₂₄ powders with JCPDS No. 83-0946.

Fig. 2. TEM image of the as-prepared La₄Ti₉O₂₄:Eu³⁺ particles.

layer with higher packing density and lower surface scattering for manufacturing W-LEDs.

Fig. 3 shows the excitation spectra of La₄Ti₉O₂₄:Eu³⁺ phosphor in the range of 250–590 nm monitored at 613 nm. The featured excitation lines mainly exist between 380 nm and 600 nm, attributed to transitions from the ⁷F₀ ground state to the excited ⁵D_J (*J* = 0, 1, 2, 3, 4) and ⁵L₆ levels of the 4f⁷ configuration of Eu³⁺, and the intensities are much higher than that of CT band positioned at 320 nm originated from the charge transfer transition of O^{2–}-Eu³⁺ and O^{2–}-Ti⁴⁺. The peaks at 395 nm, 404 nm, and 417 nm are owing to the transitions of ⁷F₀ \rightarrow ⁵L₆ and ⁷F₀ \rightarrow ⁵D₃. Commonly, the strongest excitation peak for Eu³⁺ is the ⁷F₀–⁵L₆. However, the dominant excitation peaks in the excitation spectra of La₄Ti₉O₂₄:Eu³⁺ phosphor are ⁷F₀ \rightarrow ⁵D₂ electric-dipole transition, ⁷F₀ \rightarrow ⁵D₁ magnetic-dipole transition and forbidden ⁷F₀ \rightarrow ⁵D₀

Fig. 3. Excitation spectra of $La_4 Ti_9 O_{24} {:} Eu^{3\ast}$ at room temperature as monitored at 613 nm.

Download English Version:

https://daneshyari.com/en/article/1488185

Download Persian Version:

https://daneshyari.com/article/1488185

Daneshyari.com