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ABSTRACT

Recent experiment of Darnton and Berg [34] showed that phase transition of bacterial flagellar filament
is loading rate-dependent. The object of this paper is to describe the observed loading rate-dependent
phase transition responses of the filament by using time dependent Ginzberg-Landau continuum model.
We developed a finite element method (FEM) code to simulate the phase transition under a
displacement-controlled loading condition (controlled helix-twist) by using viscosity-type kinetics. Our
FEM simulation captures the main features of the rate-dependence: under slow loading (i.e., loading
time >> the relaxation time) the filament phase transition is an equilibrium process and each phase
grows via interface propagation on the Maxwell line; under rapid loading (i.e., loading time < the
relaxation time), the phase transition does not occur and the response is elastic. Our FEM model provides
a tool to study the effects of loading-rate dependent phase transition for bio-filament with viscous
kinetics.

Crown Copyright © 2013 Published by Elsevier Ltd. All rights reserved.

1. Introduction

The motion of the flagella of live bacteria was first observed by
Ehrenberg [1] in 1838. Flagella-based motility is a major mode of
locomotion for bacteria. The long helical filament is the propeller
made up of only one kind of protein called flagellin [2,3].
Macroscopically the filament can be viewed as a hollow tube
with an outer diameter of 20 nm and a length of 15-20 pwm and can
take a helical shape [4]. As shown in Fig. 1(a) and (b), when the
bacterium swims, the flagella form a rotating bundle as the motor
is in counter clockwise (CCW) rotation. When the motor rotation
reverses, transition from normal (N) phase to semi-coiled (SC)
phase occurs in the filament [5-8]. A filament has 12 phases with
different radii and pitch lengths, whose microstructure difference
is characterized by the protein subunit misfit (e.g., 0.8 A). The
transition of the filament from one phase to another can be
induced by chemical change or by mechanical loading [9-16,34].
The mechanical analysis on the experiment of Hotani [17] showed
that both torque and bending moment contribute to the new phase
nucleation, and they are near zero at the interface (phase front)
during the equilibrium phase growth. This is consistent with the
thermodynamic equilibrium phase transition condition: Maxwell
forces are zero and the two coexisting phases have the same free
energy [17]. Berg’s recent experiment [34] showed that the phase
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transition of filament is loading rate-dependent, as shown in Fig. 2
where filament undergoes phase transition between normal and
hyperextended form by pulling. Under rapid pulling (0.4 .m/s),
the filament usually traces a simple elastic, hysteresis-free curve,
and often (9 of 19 cycles) consists a complete elastic extension-
compression cycle without experiencing a polymorphic transfor-
mation. When the filament is extended much more slowly
(0.04 pwm/s), it always transforms (10 of 10 cycles), and the
transformation generally occurs at lower force levels (Fig. 2, inset).
Our object of this paper is to describe the loading rate-dependent
phase transition of bacterial flagellar filament by using Time
dependent Ginzburg-Landau continuum model and FEM simula-
tion.

In the literature, there are several theoretical models proposed
to describe the phase transition behavior of flagellar. Goldstein
et al. [18] and Coombs et al. [19] proposed the bistable energy
function to represent two equilibrium phases, and qualitatively
explained the chirality transition of a filament observed in Hotani’s
experiment. Power et al. [20,21] proposed another continuum
theory for the polymorphism of the filament to account for the
alternate stable conformations. Stark et al. [35,36] presented a
coarse-grained model for the filament by introducing an elastic
network of rigid bodies and using Ising Hamiltonian to address the
two states of the flagellin protein. Wada et al. [37] introduced a
bistable helical filament model that accounts for different elastic
monomeric states by a discrete Ising-like spin variable along the
arclength. By hybrid Brownian dynamics Monte-Carlo simula-
tions, Wada et al. [37] showed that filament phase transition is
pulling rate dependent. In modeling the observed phase transition
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Fig. 1. (a) lllustration of movements of Escherichia coli, when its motor rotates CCW,
flagella are in a bundle and the cell swims; when the motor reverses direction,
flagella fall apart and the cell tumbles. (b) Transition between normal and semi-
coiled form under external viscous fluid force.

kinetics and the rate dependent responses, the time dependent
Ginzberg-Landau continuum model could be a good model
candidate and can be implemented into FEM simulation to
quantify filament phase transition behavior. Moreover, in order
to describe the phase transition process, such as phase nucleation
and growth with interface propagation, a non-local formulation of
interfacial energy need to be included, similar to the simulations of
the localized deformation in the phase transition process of many
shape memory alloys [22,23].

In this paper, we introduce a theoretical framework of the time
dependent Ginzberg-Landau viscoelasticity and implement it in a
1D non-local finite element method (FEM) code to simulate the
filament’s phase transition phenomena and to describe the
observed loading rate dependent effects. The theoretical frame-
work and the FEM implementation are introduced in Sections 2
and 3, respectively. In Section 4, the results of the FEM simulation
are discussed. Summary and conclusions are given in Section 5.

2. Non-convex non-local viscoelasticity

The Lagrange formulation for non-local viscoelasticity [22-25]
is:

8U 4D

dq; 44 )
where U= [(W+ G)dx, D= [Rdx x is the spatial coordinate of the
1D model; 8g; and 384; represent the variations of the freedom and
the rate of the freedom (8q; = &(dg,/dt)), respectively. W, G and R
are respectively the nonconvex elastic energy density, that
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Fig. 2. Filament pulling experiment of Berg [34]. Force-extension curves for pulling
on a normal (n=2) polymorphic form filament. It shows 10 force-extension
measurements performed at an extension rate of 0.4 um/s. During 6 of the 10 trials
shown, the filament followed a simple elastic force-extension curve (labeled A-E).
During the other trials a polymorphic transformation to the hyperextended (n=1)
form occurred during the extension of the filament, dropping the force onto a lower
curve. When the same filament was pulled at a 10-fold slower extension rate, it
transformed during every trial (inset) at about half of the force required during
rapid pulling. The flat near-zero portion corresponds to filament buckling (A and B).
Trap stiffness was 90 pN/mm. The location of zero displacement is arbitrary.

describes material instability and phase transition [26-28], the
nonlocal gradient energy density to account for the interfacial
energy [26-29], and the Rayleigh dissipation function for the
viscous overdamping kinetics [22,23,25]. To use the framework to
describe the flagella phase transition, suitable energy formulations
for the flagella — non-convex elastic energy, elastic gradient energy
and dissipation energy - are needed.

2.1. Non-convex elastic energy

A Landau free energy (non-convex) is used to describe the
elastic energy of the filament. The equilibrium twist and curvature
of the N phase and SC phase of the filament are (-2, 1.2)and (2, 2.4)
respectively (unit: rad/pwm). For simplicity, we consider only the
twist difference of the two phases in the energy formulation. That
means, the non-convex elastic energy is a function of the twist. For
mathematical convenience, we shift the equilibrium twist from
(=2, 2) to (0, 4), and express the elastic energy density as

W =16 x 10y -8 x 1072°)° + 1 x 10 2°* 2)

where y denotes the twist (per unit length). Eq. (2) is plotted in
Fig. 3(a), which has two equilibrium phases.

2.2. Non-local gradient energy
To describe the energy of the interface between the coexisting

phases, non-local energy (gradient energy) density [26,28] is
included in the current model.

G=g () (3)
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