Contents lists available at SciVerse ScienceDirect

Materials Research Bulletin

journal homepage: www.elsevier.com/locate/matresbu

Short communication

Epitaxy of Zn₂TiO₄ (1 1 1) thin films on GaN (0 0 1)

Chu-Yun Hsiao a, Jhih-Cheng Wu a, Chuan-Feng Shih a,b,*

- a Department of Electrical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
- ^b Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 70101, Taiwan

ARTICLE INFO

Article history: Received 19 July 2012 Received in revised form 8 November 2012 Accepted 12 November 2012 Available online 5 December 2012

Keywords:

- A. Thin films
- B. Sputtering C Electron microscopy
- D. Electrical properties

ABSTRACT

High-permittivity spinel Zn_2TiO_4 thin films were grown on GaN (0 0 1) by rf-sputtering, Grazing-angle, powder, and pole-figure X-ray diffractometries (XRD) were performed to identify the crystallinity and the preferred orientation of the Zn₂TiO₄ films. Lattice image at the Zn₂TiO₄ (1 1 1)/GaN (0 0 1) interface was obtained by high-resolution transmission-electron microscopy (HR-TEM). An oxygen atmosphere in sputtering and post heat-treatment using rapid thermal annealing effectively enhanced the epitaxy. The epitaxial relationship was determined from the XRD and HR-TEM results: $(1\,1\,1)_{Zn_2TiO_4}||(0\,0\,1)_{GaN}$, $(20\overline{2})_{Zn_2TiO_4}||(110)_{GaN}, \text{ and } [2\overline{1}\overline{1}]_{Zn_2TiO_4}||[0\overline{1}10]_{GaN}. \text{ Finally, the relative permittivity, interfacial trap}$ density and the flat-band voltage of the Zn_2TiO_4 based capacitor were \sim 18.9, 8.38 \times 10¹¹ eV⁻¹ cm⁻², and 1.1 V, respectively, indicating the potential applications of the Zn₂TiO₄ thin film to the GaN-based metaloxide-semiconductor capacitor.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The pursuit of high-permittivity gate oxides for use in GaNbased metal-semiconductor field-effect-transistors (MES-FETs), hetero-junction FETs (HFETs), and high-electron-mobility transistors (HEMTs) has attracted great attention in the past few years [1,2]. However, several factors have limited the progress. For example, a poor Schottky contact is formed when metal comes into direct contact with the semiconductor directly, generating a leakage current. Metal-oxide-semiconductor FETs (MOS-FETs) and MOS-HFETs have reportedly been formed by introducing a thin oxide or nitride layer, such as AlN, Ga₂O₃, SiO₂, Si₃N₄, Al₂O₃, HfO₂, MgO, or Ta_2O_5 to overcome the leakage problem [3–9]. However, most studies of high-k layers for GaN-based MOS have focused on the deposition of few metal oxides [1-10], ignoring the fact that many ceramic materials have such advantages as high dielectric constant, high thermal stability, and low dielectric loss. Previously, we demonstrated epitaxial ilmenite MgTiO₃ as an excellent gate oxide for GaN-based MOS applications. The dielectric constant and interfacial trap density were ~ 17.8 and 6×10^{12} cm⁻² eV⁻¹, respectively [11]. Similarly, spinel, which consists of face-centered cubic oxygen and cations that occupy octahedral or tetrahedral sites, can also grow epitaxially on GaN. The close-packed oxygen

E-mail address: cfshih@mail.ncku.edu.tw (C.-F. Shih).

plane in spinel should have some epitaxial relationship with GaN (001) as it does at the ilmenite/GaN interface.

Zn₂TiO₄ is an inverse spinel that has been utilized in various applications, including sensors, pigment, catalyst, and microwave dielectrics [12,13]. This work investigates the epitaxy of zinc titanate (Zn₂TiO₄) and the use as a gate oxide of a GaN-based MOS capacitor. X-ray diffraction (XRD) and high-resolution transmission electron microscopy were used to determine the preferred orientation, crystallinity, and epitaxy relationship of the Zn₂TiO₄ films. Finally, the dielectric properties of the Zn₂TiO₄/GaN-based capacitor were investigated.

2. Experimental

High-purity ZnO (J.T. Baker) and TiO₂ (>99.9%; Showa Chemical Industry Co. Ltd.) powders were used as the starting materials in the preparation of an Zn₂TiO₄ target by solid-state sintering. The two powders were mixed, ball-milled for 24 h, sieved, and calcined at 1100 °C for 2 h. After the calcination, the ceramic was grounded and pressed into a 3 inch disc before it was sintered at 1150 °C for 4 h. The sintered compact had a density of >90%. The molar ratio of $ZnO/TiO_2 = 2/1$ was well-controlled, yielding a target of pure Zn_2TiO_4 in the absence of second phases.

Sputtering was conducted at an rf-power of 125 W and a working pressure of 2×10^{-3} torr following pre-sputtering for 15 min. Pure argon or mixed argon/oxygen (5 sccm/5 sccm) gases were separately introduced to the vacuum chamber for sputtering. All of the films were deposited at room temperature. The Zn₂TiO₄ thin film was ~30 nm-thick. The n-type GaN was grown on

^{*} Corresponding author at: Department of Electrical Engineering, National Cheng Kung University, Tainan 70101, Taiwan. Tel.: +886 6 2757575x62398; fax: +886 6 2080687.

 $(0\,0\,0\,1)$ sapphire with a thickness of $\sim 4~\mu m$ and a doping concentration of $1\times 10^{18}~cm^{-3}$. The films were post-annealed by either conventional furnace or rapid thermal annealing (RTA) in forming gas $(5\%~H_2+95\%~N_2)$ and pure N_2 , respectively. The structure and the orientation of the Zn_2TiO_4 thin films were characterized by X-ray diffractometry (XRD) using $\theta-2\theta$, Grazing angle (Siemens/D5000) and pole figure (Rigaku D/MAX2500) methods. An Al gate electrode was formed by thermal evaporation. High-resolution transmission-electron microscopy (HR-TEM, JEOL/JEM-2100) was used to obtain lattice image at the interface between GaN and Zn_2TiO_4 . The electrical properties of the fabricated MOS capacitors were determined by measuring high-frequency capacitance-voltage (C-V) curves using an Agilent E4980A impedance analyzer.

3. Results and discussion

Fig. 1 plots the atomic stacking sequence and epitaxial relationship between Zn_2TiO_4 (1 1 1) and GaN (0 0 1). The plot is based on the fact that the oxygen in Zn_2TiO_4 (1 1 1) and Ga (or N) in GaN (0 0 1) have the same symmetry and small lattice mismatch (Fig. 1(b)). Therefore, the lattice constant of Zn_2TiO_4 is estimated to be 6% smaller than that of GaN (Fig. 1(a)). Fig. 2(a) shows the θ –2 θ XRD patterns of the Zn_2TiO_4 films that were post-annealed at several temperatures by RTA (600–800 °C held for 3 min) and furnace annealing (800 °C, 1 h). The (1 1 1)-preferring orientation of the samples increased with RTA temperature. Moreover, samples that were treated by RTA had a stronger tendency to have a (1 1 1) texture than those treated in a furnace at the same

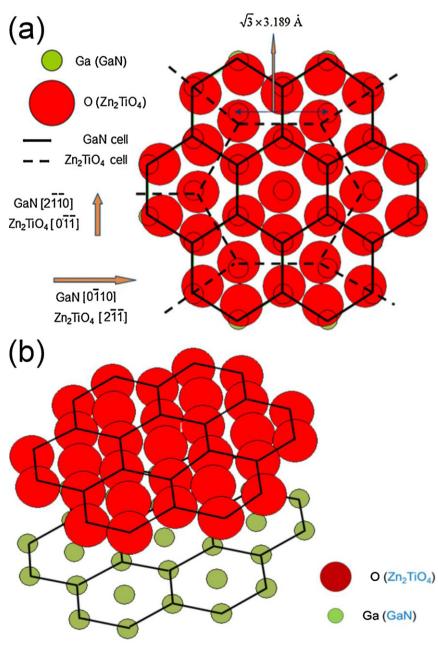


Fig. 1. Epitaxial relationship in Zn₂TiO₄ (1 1 1)/GaN (0 0 1) interface.

Download English Version:

https://daneshyari.com/en/article/1489537

Download Persian Version:

https://daneshyari.com/article/1489537

<u>Daneshyari.com</u>