FISEVIER

Contents lists available at SciVerse ScienceDirect

Materials Research Bulletin

journal homepage: www.elsevier.com/locate/matresbu

Comparison of electrochemical performances of LiFePO₄/C composite materials by two preparation routes

Chun-Chen Yang*, Ying-Chih Chen, Ying-Chieh Liao

Department of Chemical Engineering, Ming Chi University of Technology, 84 Gungjuan Rd., Tai-shan Div., New Taipei City 243, Taiwan, ROC

ARTICLE INFO

Article history: Received 28 October 2011 Received in revised form 6 March 2012 Accepted 18 April 2012 Available online 6 May 2012

Keywords: Electronic materials Inorganic compound Composites Sol-gel chemistry

ABSTRACT

This study reports on the preparation of LiFePO $_4/C$ composite materials prepared by the hydrothermal and sol–gel processes for comparison. The synthesis condition on the hydrothermal process was performed at 170 °C for 19 h. The polystyrene (PS) polymer was used as a carbon source; the PS was added at a range of 0–5 wt.%. The temperature of the post-thermal process was set at 750–850 °C. The citric acid (denoted as CA) was used as the reducing agent and the carbon source in the sol–gel process. The temperatures of the sintering process were set at a range of 650–850 °C. The optimal sintering temperature was at 850 °C for 12 h in the hydrothermal process; the optimal carbon residue content was approximately 3.20 wt.%. It was revealed that the highest discharge capacity of LiFePO $_4/C$ composites by the hydrothermal process at 0.1 C is 163 mAh g $^{-1}$. The optimal sintering temperature was found to be at 750 °C for the sol–gel process. The highest carbon content was approximately 11.94 wt.% as the molar ratio of CA is 1.0. The highest discharge capacity of LiFePO $_4/C$ composites by the sol–gel process at 0.1 C was approximately 130.35 mAh g $^{-1}$.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Lithium-ion batteries, due to their relatively high specific capacity, are considered for electric vehicle (EV), cell phones, laptop computers, digital cameras, renewable energy storage, and smart grid applications. The LiFePO₄ cathode material proposed by Padhi et al. [1] has attracted extensive attention for application in the next generation of rechargeable lithium-ion batteries due to its low cost, environmental benignancy, excellent safety characteristics, high capacity (theoretical capacity $\sim 170 \text{ mAh g}^{-1}$), and excellent cycling performance. However, its poor conductivity, for electron and ion transfer, is the major barrier for commercial applications. The electron conductivity of LiFePO4 is only $10^{-9}\,\mathrm{S\,cm^{-1}}$ [2] and its lithium ion diffusivity is 10^{-14} – $10^{-16} \, \text{cm}^2 \, \text{s}^{-1}$ [3]. There are three methods to improve the electronic conductivity, which include the following: (1) carbon coating; (2) doping with supervalent cations and (3) decreasing the particle size. The carbon coating is the most effective among these methods, and is a facile way to improve the conductivity of LiFePO₄ materials. The LiFePO₄ cathode materials can usually be prepared via a solid-state reaction [4,5], sol-gel process [6,7], and hydrothermal process [8-13]. Whittingham [8] revealed that the high-quality crystalline LiFePO $_4$ platelets can be obtained by a low temperature hydrothermal process.

In this work, we prepared the LiFePO₄/C composite materials by a hydrothermal process (using expensive Fe²⁺ salts, FeSO₄) and a post-sintering process, at temperatures of 750, 800 and 850 °C. The polystyrene polymer, which is with aromatic structure, was used as a carbon source. For comparison, we also prepared the LiFePO₄/C composites by a common soft chemistry route, i.e., a sol–gel process. The citric acid was used as the reducing agent and the carbon source in the sol–gel process (using cheap Fe³⁺ salts, Fe(NO₃)₃). The characteristic properties of LiFePO₄/C composite materials were examined by X-ray diffraction (XRD), micro-Raman spectroscopy, scanning electron microscopy (SEM), high-resolution transmission microscopy (HR-TEM), elemental analysis (EA), and micro-Raman spectroscopy. The electrochemical performances of the LiFePO₄/Li battery were examined by a galvanostatic charge/discharge method and a cyclic voltammetry method.

2. Experimental

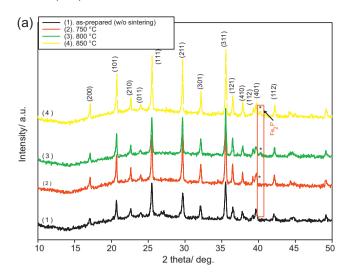
2.1. Preparation of composite LiFePO₄/C materials

The LiFePO₄/C composite materials were prepared by a hydrothermal process and a post-sintering process. The appropriate quantities of FeSO₄·7H₂O, LiOH·H₂O, and NH₄H₂PO₄ (Aldrich) as the starting materials were dissolved in 200 mL deionized water. The molar ratio of Li:Fe:P was 2:1:1. The polystyrene (PS, MW 35,000,

Corresponding author. Tel.: +886 02209089899; fax: +886 0229041914. E-mail address: ccyang@mail.mcut.edu.tw (C.-C. Yang).

Aldrich) polymer was dissolved in acetone to form a 5 wt.% PS stock solution. Approximately 50 mL of 5 wt.% PS stock solution was added drop by drop into the above mixture solution while stirring. The added carbon source in the LiFePO₄ materials was maintained at 0-5 wt.% PS. The mixed solution was transferred into a 600 mL Teflon-lined stainless steel autoclave, which was heated at 170 °C for 19 h. After the solution cooled down to room temperature, the precipitate composite powder was cleaned and dried at 60 °C for 12 h under vacuum oven, followed by post-sintering at 750, 800, and 850 °C for 9 h under an Ar/H₂ (95:5, v/v) atmosphere. By contrast, the LiFePO₄/C composite materials were also prepared by a sol-gel process. LiNO₃, Fe(NO₃)₃, NH₄H₂PO₄ (Aldrich), and citric acid (CA) were used as the starting materials to prepare LiFePO₄/C composite materials. LiNO₃, Fe(NO₃)₃ and NH₄H₂PO₄ were dissolved in D.I. water, and mixed together to form a homogeneous mixture solution. The appropriate quantities of citric acid solution were slowly added into the resulting mixture solution. The molar ratio of Li:Fe:P:citric acid in the precursor solution was maintained at 1:1:1:0.5-1.0. After complete mixing, the sol was dried at 60 °C for 12 h. The wet gel was subsequently dried in a vacuum oven at 120 °C for 10 h. After thorough grinding with a mortar and pestle, the dry gel was sintered at 650, 750, and 850 °C for 12 h under an Ar/H₂ (95:5, v/v) atmosphere.

2.2. Material characterization


The crystal structure of LiFePO₄/C composite samples was examined by an X-ray diffraction (XRD) spectrometer (Philip, X'pert Pro System). The surface morphology was conducted by a scanning electron microscope (SEM, Hitachi). The residue carbon morphology was observed by a high-resolution transmission electron microscopy (HR-TEM, JEOL 2010F). The micro-Raman spectra were recorded on a confocal micro-Renishaw with a 632 nm He–Ne laser excitation. The residual carbon content in the sample was analyzed using Elemental Analyzer (Perkin Elmer 2400). The electron conductivity of the composite samples was measured by AC impedance method.

2.3. Electrochemical measurements

The electrochemical performances of the Li/LiFePO₄ composite battery were measured by using a two-electrode system (CR 2032 coin cell assembled in an argon-filled glove box). The LiFePO₄/C composite electrodes were prepared by mixing active LiFePO₄/C materials, Super P, and poly(vinyl fluoride) (PVDF) binder in a weight ratio of 90:5:5, pasted on an aluminum foil (Aldrich), and then dried in a vacuum oven at 120 °C for 12 h. The lithium foil (Aldrich) was used as the counter and reference electrode. A microporous PE film was used as the separator. The electrolyte was 1 M LiPF₆ in a mixture of EC and DEC (1:1, v/v, Merck). The LiFePO₄/Li composite batteries were charged by a constant current + a constant voltage profile (CC-CV) and discharged by a constant current profile, over a potential range of 2.0-3.8 V (vs. Li/Li⁺) at varied C rates with an Autolab PGSTAT302N potentiostat. The second CV charge step of 3.80 V was terminated when the charged current was below 0.1 C current. The cyclic voltammetry (CV) was conducted by using an Autolab instrument at a scanning rate of 0.1 mV s^{-1} between 2.5 and 4.2 V.

3. Results and discussion

The XRD patterns of pure LiFePO₄ materials prepared by the hydrothermal and the sol–gel processes are shown in Fig. 1(a) and (b), respectively. The XRD diffraction patterns revealed that both the pure LiFePO₄ and the LiFePO₄/C composite materials (XRD data not shown here) are all single phase materials with an olivine-type

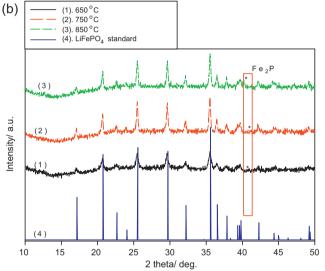


Fig. 1. XRD patterns for LiFePO₄/C by: (a) hydrothermal process and (b) sol-gel process.

structure indexed to the orthorhombic Pnma space group. A number of small Fe₂P peaks $(2\theta = 40.28^{\circ}, 44.20^{\circ}, 47.29^{\circ})$ were found in the XRD pattern which can be ascribed to the reduction of phosphate and iron in the precursor by the presence of any reductive atmosphere. Nazar et al. [14,15] reported that metal phosphates (Fe₂P) exhibit a high electron conductivity of approximately 0.1 S cm⁻¹. No other impurity peaks were found, which indicates the high purity of the as-prepared LiFePO₄/C composite samples. Due to the high conductivity of Fe₂P phase, the electron conductivity of the LiFePO₄/C composite materials with Fe₂P and carbon may effectively enhance the electron conductivity of composite materials. The diffraction peak of the residual carbon cannot be found in the pattern; and may be their low content or amorphous state. The lattice parameters of the as-prepared pure LiFePO₄ sample and composite LiFePO₄/C sample were calculated based on the XRD patterns and are listed in Table 1. It was found that that the lattice parameters of all LiFePO₄ and LiFePO₄/C materials by the hydrothermal and sol-gel processes are the same as the standard LiFePO₄ (JCPDS card number 81-1173, a = 10.33 Å, b = 6.010 Å, c = 4.692 Å). The carbon source of PS or citric acid has no observable influence on the structure of LiFePO4 composite materials.

The SEM image of the LiFePO₄/C composite (5 wt.% PS in oven bath) sample by the hydrothermal process is shown in Fig. 2(a).

Download English Version:

https://daneshyari.com/en/article/1490419

Download Persian Version:

https://daneshyari.com/article/1490419

Daneshyari.com