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A B S T R A C T

Background: The statistical tests for single locus disease association are mostly under-powered. If a
disease associated causal single nucleotide polymorphism (SNP) operates essentially through a complex
mechanism that involves multiple SNPs or possible environmental factors, its effect might be missed if
the causal SNP is studied in isolation without accounting for these unknown genetic influences. In this
study, we attempt to address the issue of reduced power that is inherent in single point association
studies by accounting for genetic influences that negatively impact the detection of causal variant in
single point association analysis. In our method we use propensity score (PS) to adjust for the effect of
SNPs that influence the marginal association of a candidate marker. These SNPs might be in linkage
disequilibrium (LD) and/or epistatic with the target-SNP and have a joint interactive influence on the
disease under study. We therefore propose a propensity score adjustment method (PSAM) as a tool for
dimension reduction to improve the power for single locus studies through an estimated PS to adjust for
influence from these SNPs while regressing disease status on the target-genetic locus. The degree of
freedom of such a test is therefore always restricted to 1.
Results: We assess PSAM under the null hypothesis of no disease association to affirm that it correctly
controls for the type-I-error rate (<0.05). PSAM displays reasonable power (>70%) and shows an average
of 15% improvement in power as compared with commonly-used logistic regression method and PLINK
under most simulated scenarios. Using the open-access multifactor dimensionality reduction dataset,
PSAM displays improved significance for all disease loci. Through a whole genome study, PSAMwas able
to identify 21 [14_TD$DIFF]SNPs from the GAW16 NARAC dataset by reducing [15_TD$DIFF]their original trend-test p-values from
within 0.001 and 0.05 to [16_TD$DIFF]p-values less than 0.0009, and among which 6 SNPs were further found to be
associated with immunity and inflammation.
Conclusions: PSAM improves the significance of single-locus association of causal SNPs which have had
marginal single point association by adjusting for influence from other SNPs in a dataset. This would
explain part of the missing heritability without increasing the complexity of the model due to huge
multiple testing scenarios. The newly reported SNPs from GAW16 data would provide evidences for
further research to elucidate the etiology of rheumatoid arthritis. PSAM is proposed as an exploratory tool
that would be complementary to other existing methods. A downloadable user friendly program, PSAM,
written in SAS, is available for public use.
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1. Introduction

Identifying disease susceptibility loci for complex diseases
through genetic association studies assume that finding highly
significant statistical differences between marker allele frequen-
cies in case and control populations would help to discover genes
influencing disease expression (Corso and Greenberg, 2014). The
statistical tests used to detect causal variant using single locus
association analyses are mostly under-powered. One could
conceivably focus on the complex relationship between multiple
genetic variants to account for the loss of heritability in such single
locus association strategies (Zuk et al., 2012). If a disease associated
causal single nucleotide polymorphism (SNP) operates essentially
through a complex mechanism that involve multiple SNPs or
environmental factors, the effect of the causal SNPmight bemissed
if it is studied in isolation without accounting for these unknown
genetic influences. Hence, methods which focus on pair-wise
statistical interaction between SNPs, in search for disease
association have been developed (Sengupta Chattopadhyay
et al., 2014; Hahn et al., 2003; Purcell et al., 2007). Multifactor
dimensionality reduction method (MDR) is one such popular
method, which uses a non-parametric technique via exhaustive
search strategy for higher order epistasis analysis (Hahn et al.,
2003). The epistasis module of PLINK is another popular state of
the art procedure which uses a parametric technique to conduct
gene-gene interaction analysis (Purcell et al., 2007). However,
there are several issues that pose challenge for such interaction
studies. These include the problem of handling higher order
interactions (>2-way) where the number of possible marker
combinations is manifold for a large number of SNPs, hence,
analysis involving large samples are required to obtain a significant
p-value. The amount of time needed to perform such analyses even
with advanced CPU power and space is unaccountable for large-
scale association data. Moreover, presence of allelic heterogeneity,
varying amounts of linkage disequilibrium (LD) between disease
alleles and marker SNP, and differing interactions of disease allele
with alleles at other loci add to the challenge of identifying disease
association with interacting loci.

In single locus analysis strategies, statistical power to detect the
causal locus is likely to be reduced as the effect of the causal locus is
masked by the effects of genetic variants at other loci (definition of
epistasis) thereby compromising the inference of detecting causal
variant (Cordell, 2002). This masking effect is essentially a
definition of epistatic effect of other SNPs on the causal SNP as
stated by Cordell (2002). Accounting for such masking/confound-
ing effects would explain part of the missing heritability in single
locus analysis strategies.

Propensity score (PS) approach is popular to epidemiologists for
mitigating confounding effects in observational studies (Austin,
2011). It was first proposed by Rosenbaum and Rubin to infer cause
and effect from observational studies (Rosenbaum and Rubin,
1983). PS is estimated through a conditional probability where a
particular treatment is assigned given a vector of observed
covariates and adjustment for this PS is sufficient to remove bias
due to all observed covariates (Rosenbaum and Rubin, 1983). An
observational study attempts to estimate the effects of a treatment
or an exposure by comparing outcomes for subjects who were not
assigned at random to treatment or control (Jepsen et al., 2004). PS
reduces or adjusts for the effects of confounders to estimate
treatment effects, and it balances covariates (such as age, gender or
[17_TD$DIFF]population principle components) so that treated and control
groups are comparable (Austin, 2011). Most often a logistic
regression model is used to estimate the true PS by regressing
the treatment status on observed covariates (McCullagh and
Nelder, 1989). Several ways to adjust for covariates when

estimating the effects of treatment on outcomes using PS include
matching, stratification (or subclassification), covariate adjust-
ment and inverse probability treatment weighing (IPTW) (Pour-
hoseingholi et al., 2012; Pirracchio et al., 2015).

In genetic association studies, to infer the direct causal effect of
a genetic variant, Vansteelandt et al. (2009) have proposed to use
PS to control for the effect of biological phenotypes to adjust for
confounding. Jiang and Zhang (2011) have also suggested using [18_TD$DIFF]

non-parametric techniques to obtain PS while adjusting for
covariates like population stratification or environmental factors
for SNPs of interest [19_TD$DIFF]to identify disease association. Instead of
directly testing epistatic effects from numerous combinations of
SNPs, in this paper, [20_TD$DIFF]we propose using PS as a dimension-reduction
tool to improve the marginal single-point association result for
each SNP by accounting for loss of heritability. The effects include
SNPs that are epistatic and/or in LD (correlated) with the target-
SNP. Epistatic SNPs have a joint interactive influence on the disease
under study. Correlated SNPs i.e., those in LD with the target-SNP
have an effect on the disease. The underlying model logit
(Y) =b0 +Sk=1�nbk�SNPk + g (SNPi,SNPj [21_TD$DIFF]), consists of both main
effects for each SNP (Sk=1�nbk�SNPk), and epistasis effects g
(SNPi,SNPj) caused by disease-related SNPi and SNPj for specific i
and j. The epistatic function g can only be expressed in a form of
two-way matrix (Table 1). The goal of this study is to detect single
point disease association of SNPk (k=1�n). When SNPi and SNPj
for unknown i and j have relatively weak main effects (bi,bj)but
strong epistatic effect g, models including either SNPi or SNPj
usually have low power due to the weak main effects, and their
effects are likely to be ignored unless both are present in the fitted
model. However it is not plausible to include either all SNPs (main
effects) in one model or to try models of all possible interacting
SNP combinations (for all i and j) when n is large. A conventional
method, stepwise-multiple logistic regression model (S-MLRM), is
to fit Yon the SNPs using stepwise selection procedure (Cordell and
Clayton, 2002). However this method have low power when the
targetmarker SNPi and SNPj haveweakmain effects. Another naïve
choice, is univariate logistic regression model (ULRM), where
univariate SNPs (SNPk for each k =1�n) are fitted individually
through a logistic regression model and significant SNPks’ are
picked, may also result [22_TD$DIFF]in low power due to the similar reason.

The proposed propensity score adjustment method (PSAM)
tests single locus association through an estimated PS to adjust for
influence from correlated and/or epistatic genetic factors. Such
genetic factors (SNPs) could be termed as covariate SNPs as they
could possibly be predictive of the disease under study ormay be in
associationwith the SNP under study (Clarke et al., 2011). The PS of
a target-SNP is expected to summarize the necessary information
from the numerous other SNPs which may be potentially epistatic
or correlated with the disease locus, and therefore reduces the
dimensionality of statistical testing. The original application of PS
was to balance the covariates’ distributions for a binary target-
explanatory variable (exposure and non-exposure). However, for
continuous or multi-level target-variable, it had been shown that
the direct adjustment by incorporating PS into the model can also
efficiently reduce the bias due to the imbalance, whereas in this
case the PS was estimated by linear regression (Lian, 2003). In this
study, for simplification, we illustrate the effect of the PS for a
binary target-SNP i.e., the SNP under study, by assuming the target-
SNP as dominant or recessive. We propose to identify candidate
covariate SNPs, prioritize them using a stepwise regression
method and integrate them into the PS based covariate adjustment
model (Schneeweiss et al., 2009). The target-SNP is regressed over
such covariate SNPs to obtain the predicted PS. The systematic
differences in these SNPs are taken care of between cases
and control subjects while estimating the adjusted effect of the
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