ELSEVIER



Materials Research Bulletin



journal homepage: www.elsevier.com/locate/matresbu

# Synthesis of cubic niobium nitride by reactive diffusion under nitrogen pressure

A.V. Linde<sup>a,b</sup>, R.-M. Marin-Ayral<sup>b,\*</sup>, D. Granier<sup>b</sup>, F. Bosc-Rouessac<sup>b</sup>, V.V. Grachev<sup>a</sup>

<sup>a</sup> Institute of Structural Macrokinetics and Materials Science (ISMAN), Russian Academy of Sciences, Chernogolovka, Moscow 142432, Russia <sup>b</sup> Institut Charles Gerhardt Montpellier (ICGM), PMOF-UM2-CNRS, pl. E. Bataillon, 34095 Montpellier Cedex 5, France

#### ARTICLE INFO

Article history: Received 20 May 2008 Received in revised form 3 November 2008 Accepted 5 November 2008 Available online 18 November 2008

Keywords: A. Nitrides C. X-ray diffraction C. High pressure D. Diffusion D. Microstructure

## 1. Introduction

Niobium nitrides are known to exist within an extended homogeneity range and their properties—such as good thermal stability [1], high microhardness [2], remarkable corrosion resistance [3], etc.—strongly depend on their composition. Among these compounds, cubic niobium nitride ( $\delta$ -NbN<sub>1+x</sub>) is of especial interest as a high- $T_c$  superconductor with  $T_c = 17.3$  K [4–6]. Superconducting properties of this compound also are composition-sensitive.

At high-temperatures, niobium is highly reactive with respect to nitrogen gas. Three methods are generally used to prepare niobium nitrides: synthesis of niobium nitride powders by hightemperature reactive diffusion [7], synthesis of bulk samples [8], self-propagating high-temperature synthesis (SHS) of powders [9,10] and bulk samples [4], and plasmochemical synthesis of thin niobium nitride films [11]. Niobium nitride fibers can be obtained upon thermal decomposition of niobium alkoxide–cellulose gel fibers in an NH<sub>3</sub> atmosphere at temperatures around 1400 °C [12]. A variety of niobium nitride phases is known to exist in the Nb–N system:  $\alpha$ -Nb(N) solid solution,  $\beta$ -Nb<sub>2</sub>N<sub>1±x</sub>,  $\gamma$ -Nb<sub>4</sub>N<sub>3±x</sub>,  $\delta$ -NbN<sub>1±x</sub>,  $\epsilon$ -NbN<sub>1±x</sub> [7,13,14], and also other N-rich phases such as Nb<sub>5</sub>N<sub>6</sub> and Nb<sub>4</sub>N<sub>5</sub> [15].

In this work, we explored the mechanism for formation of  $\delta$ -NbN<sub>1±x</sub> in conditions of reactive diffusion upon variation in process

#### ABSTRACT

The synthesis of niobium nitride by reactive diffusion in a furnace at 1395–1475 °C and under nitrogen pressure in the range 2–25 MPa was investigated. In experiments, we used compacted Nb powder with a mean particle size of 43 µm. Phase transformations in the product as studied by electron probe microanalysis (EPMA) were found to proceed in the following order: Nb  $\rightarrow \alpha$ -Nb(N)  $\rightarrow \beta$ -Nb<sub>2</sub>N<sub>1±x</sub>  $\rightarrow \gamma$ -Nb<sub>4</sub>N<sub>3±x</sub>  $\rightarrow \delta$ -NbN<sub>1±x</sub>. The size of niobium particles which could react with nitrogen to yield cubic niobium nitride was estimated (SEM analysis) from the dependence of the thickness  $\Delta$  of the  $\delta$ -NbN<sub>1±x</sub> outer layer formed on the surface of Nb particles on the dwell time  $t_{dw}$  at 1460–1473 °C. It was shown that  $\Delta$  grew nearly proportional to  $t_{dw}$ . At  $t_{dw}$  = 30 min and  $P(N_2)$  = 2 MPa,  $\Delta$  was found to attain a value of about 15.5 µm. Prolonged heating ( $t_{dw} \approx 60$  min) was found to result in decomposition of the single-phase cubic niobium nitride into a two-phase (multiphase) product. This was confirmed by XRD data and magnetic measurements which showed the occurrence of two different critical temperatures  $T_c$  in the same sample. The maximum critical temperature  $T_c$  was found to attain a value of 15.6 K.

© 2008 Elsevier Ltd. All rights reserved.

parameters and hence in the microstructure, composition, and superconductivity of resultant nitride powders.

#### 2. Experimental

In experiments, we used the Nb powder with a mean particle size of 43  $\mu$ m (325 mesh). The particle size distribution of this powder (as determined with a Laser Particle Sizer Analysette 22) and its microstructure are shown in Figs. 1 and 2, respectively.

All experiments were carried out at 1395–1475 °C in a GHC-20 Unipress high-pressure–high-temperature unit under nitrogen pressures  $P(N_2)$  in the range 2–25 MPa and dwell times of 0– 60 min. Pelleted niobium samples 3 mm × 4 mm × 25 mm in size (porosity 35–38%) were placed into a boron nitride crucible and then put into a one-heating-zone furnace (Fig. 3). The furnace was then accommodated inside a high-pressure chamber. Before synthesis, the samples were dried at 160 °C in vacuum (10<sup>-4</sup> Pa, see Fig. 4). Then the chamber was filled with nitrogen to a required value of  $P(N_2)$  and heat-treated according to the schedule shown in Fig. 4. The dwell time  $t_{dw}$  at a maximum possible temperature (1550 °C) could be varied between 0 min and several hours. Temperatures  $T_1$ ,  $T_3$ , and  $T_4$  (see Fig. 3) were measured with thermocouples.

The product of reactive diffusion was characterized by XRD. The diffraction patterns were taken with a Phillips Expert diffractometer (Cu K $\alpha$ 1 radiation,  $2\theta$  = 15–125°, angle pitch 0.017°, acquisition time 1024 s). According to the XRD data, a main phase of the product was cubic niobium nitride whose composition was determined in weight gain experiments. The lattice parameter of

<sup>\*</sup> Corresponding author. Tel.: +33 467143355; fax: +33 467144290. E-mail address: rose-marie.ayral@univ-montp2.fr (R.-M. Marin-Ayral).

<sup>0025-5408/\$ –</sup> see front matter © 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.materresbull.2008.11.008



Fig. 1. Size distribution of starting Nb powder.



Fig. 2. Microstructure of starting Nb powder.

synthesized cubic niobium nitrides was determined using the Celref software. Micrographs were taken with a Leo S260 or Hitachi 4500I SEM device. Phase formation in products was studied by electron probe microanalysis (EPMA). Magnetic susceptibility was measured with a Quantum Design MPMS-XL SQUID magnetometer. Critical temperatures  $T_c$  were measured with an accuracy of 0.1 K.



Fig. 3. Schematic of the experimental setup.



Fig. 4. Schedule of heat treatment.

### 3. Results and discussion

#### 3.1. Dependence of nitrogen content on process parameters

Fig. 5 shows the stoichiometric coefficient x (in NbN<sub>x</sub>) as a function of dwell time  $t_{dw}$  at  $T_{dw} = 1460 \pm 10$  °C and  $P(N_2) = 2$  MPa. It follows that x initially grows with increasing  $t_{dw}$  and then levels-off. It is noteworthy that a value of  $P(N_2) = 2$  MPa was chosen because, according to the results of weight gain measurements, in this case it was possible to obtain cubic niobium nitrides within a wide range of x and thus to investigate their properties. It was difficult for us to obtain overly stoichiometric compounds (x > 1) under reduced nitrogen pressures (below 2 MPa), while under higher pressure (above 2 MPa), we could not obtain products with low x.

According to the weight gain data, cubic niobium nitrides can be obtained within the wide range of *x*: 0.93 < *x* < 1.01. However, microstructure investigation has shown that the larger particles in starting powder remained partially unreacted (for all  $t_{dw}$ ). Internal layers of the samples were found to contain also  $\gamma$ -Nb<sub>4</sub>N<sub>3±x</sub>,  $\beta$ -Nb<sub>2</sub>N<sub>1±x</sub>, and unreacted Nb. At  $t_{dw}$  = 6 min, more or less uniformly nitrided were the particles up to 28 µm in size, while at  $t_{dw}$  = 60 min, the particles up to 66 µm in size. In view of this, the mechanism of phase formation in the product was investigated in experiments with coarser powders (with a particle size about 100 µm).

#### 3.2. Microstructure

As can be inferred from the micrograph presented in Fig. 6a, phase formations during reactive diffusion proceed in the following order. First, a solid solution of nitrogen in niobium



**Fig. 5.** Stoichiometric coefficient *x* in NbN<sub>x</sub> as a function of  $t_{dw}$ :  $T_{dw} = 1460 \pm 10$  °C,  $P(N_2) = 2$  MPa.

Download English Version:

# https://daneshyari.com/en/article/1491437

Download Persian Version:

https://daneshyari.com/article/1491437

Daneshyari.com