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A B S T R A C T

Performance of small molecule automated docking programs has conceptually been divided into docking
-, scoring -, ranking - and screening power, which focuses on the crystal pose prediction, affinity
prediction, ligand ranking and database screening capabilities of the docking program, respectively.
Benchmarks show that different docking programs can excel in individual benchmarks which suggests
that the scoring function employed by the programs can be optimized for a particular task. Here the
scoring function of Smina is re-optimized towards enhancing the docking power using a supervised
machine learning approach and a manually curated database of ligands and cross docking receptor pairs.
The optimization method does not need associated binding data for the receptor-ligand examples used in
the data set and works with small train sets. The re-optimization of the weights for the scoring function
results in a similar docking performance with regard to docking power towards a cross docking test set. A
ligand decoy based benchmark indicates a better discrimination between poses with high and low RMSD.
The reported parameters for Smina are compatible with Autodock Vina and represent ready-to-use
alternative parameters for researchers who aim at pose prediction rather than affinity prediction.

ã 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Automated ligand docking to receptor models is an important
method in structure based molecular design and structural
bioinformatics. Docking algorithms aim to predict the preferred
conformations and binding affinities of small molecule ligands
given a receptor model. Docking of small molecule ligands for
receptor targets has been used in a variety of studies, ranging from
in silico screening of large compound databases to predicting
affinity of novel compound designs in lead optimization. Usually
the docking algorithms use an optimization search strategy that
generates proposed conformations of the ligand in the receptor in
combination with a scoring function that evaluates how the ligand
fits in the receptor binding pocket (Meng et al., 2011).

Performance of docking programs has conceptually been
divided into docking power, scoring power, ranking power and
screening power (Li et al., 2014a) to probe the usefulness of the
docking program for different applications such as crystal pose
prediction, affinity prediction, ligand ranking and virtual screen-
ing, respectively (Wang et al., 2004a).

Docking power is focused on the programs ability to predict the
correct conformation of the ligand and the placement in the
receptor molecules (the pose). It can be evaluated by docking

ligands to receptors with known binding mode of the ligands and
comparing the result with the already known experimentally
determined binding mode. The docked poses are usually evaluated
by computing the root mean square deviation (RMSD) between the
heavy atoms of the docked ligand and native crystal pose. The
average RMSD can be used, but often a threshold of 2 Å RMSD is
used to calculate the fraction of correct predictions (Cheng et al.,
2009; Xu et al., 2015).

The scoring, ranking and screening power focuses on the
affinity prediction, ligand series ranking and database screening
performance, respectively. Scoring power is usually benchmarked
by calculating the correlation between predicted and measured
affinities for large databases such as the PDBbind (Wang et al.,
2004b; Wang et al., 2005) database (Li et al., 2014a). Ranking
power represents a variant of the scoring power where the focus is
on the ranking of the ligand series (Plewczynski et al., 2011) and
screening power is measured by the ability to identify known
binders seeded in large databases of decoys by calculating the area
under the receiver operator curves (ROC) (Li et al., 2014a;
Christofferson and Huang, 2011; Bauer et al., 2013).

The differences in benchmarks reflect the versatility of the in
silico docking approach, but also they emphasize that evaluation of
the docking programs is linked to the intended use. For example,
the medicinal chemist who wants to use bio-structural inspiration
for lead optimization, may not be interested in the affinity
prediction as the experimental data are already available, but
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instead care very much about the accuracy of the predicted pose. In
an in silico compound library screening program, the ability of the
docking algorithm to distinguish binders from non-binders is
important, whereas the affinity prediction will be the important
aspect for a medicinal chemist who wants to examine the possible
effect of a small structural change to a lead compound with known
binding mode.

With regard to evaluation of docking power there is an
additional aspect to be taken into account. Either the ligand can
be re-docked into the receptor X-ray structure where the ligand
binding mode was determined or docked into a receptor model
from an X-ray structure determined with a different co-crystallized
ligand (Cross docking). The last procedure reflects the real world
use and has been used as a benchmark for docking accuracy
(Morris et al., 2009; Liu et al., 2012; Forli and Olson, 2012; Stigliani
et al., 2012).

A widely used docking program is Autodock Vina (Trott and
Olson, 2010) programmed as an alternative to Autodock (Morris
et al., 2009). Autodock Vina employs a docking algorithm and
scoring function different than Autodock, but is compatible with
the file formats used in Autodock and uses the same tools to
prepare receptor and ligand files. In comparison with the original
Autodock, Autodock Vina was shown to be much faster and with a
large improvement of docking accuracy for compounds with large
conformational freedom in the form of torsions (Trott and Olson,
2010). It is unclear precisely how the weights were determined for
the original scoring function in Autodock Vina, except that it was
tuned against PDBind (Wang et al., 2004b; Wang et al., 2005).
Autodock Vina uses an empirical scoring function to dock and to
predict the affinity of the ligand. Five terms, gauss1, gauss2,
repulsion, hydrophobic and hydrogen bond, analyzing pairwise
atom interactions are scaled and linear combined, whereas a last
term, Nrot, is combined in a non-linear fashion (Trott and Olson,
2010). The source code for Autodock Vina was released in 2010, and
has been forked and modified by others. QuickVina2 (Alhossary
et al., 2015) focuses on improving computational efficiency,
whereas Smina (Koes et al., 2013) has exposed already existing
experimental score terms and added convenience functions such
as automatic calculation of the docking box from a reference
ligand. VinaLC (Zhang et al., 2013) added multi-threading and
message passing interface (MPI) support for use at high perfor-
mance clusters.

When ranking docking programs and the scoring functions
evaluating the different “powers”, no single program is a clear
winner amongst all benchmark types. For example GOLD (Verdonk
et al., 2003) has been found to be one of the best in benchmarks for
pose prediction (Li et al., 2014a), whereas Schrödingers Glide
(Friesner et al., 2004; Halgren et al., 2004) has performed better in
database enrichment studies and affinity prediction (Li et al.,
2014a). It has been noted that no single scoring function
outperforms others in the benchmarking of the different aspects
of docking performance (Cheng et al., 2009). Recent efforts in
optimizing binding affinity prediction with the use of non-linear
machine learning models such as random forests (Zilian and
Sotriffer, 2013; Li et al., 2015; Fourches et al., 2015) or support
vector machines (Kinnings et al., 2011a), have led to improvements
in affinity prediction. As an example, the RF-Score-v3 (Li et al.,
2015) nearly doubles the Pearsson’s correlation coefficient in
comparison with GlideScore-XP (Friesner et al., 2006). However,
the improvements in affinity prediction seem unrelated to
improvements in the docking performance, an effect which has
also been noted in previous benchmarks of docking and scoring
performance (Warren et al., 2006). This seemingly counter
intuitive divergence between the various “powers” is the reason
why the machine learning approach has been criticized (Gabel
et al., 2014). However, machine learning approaches have on

several occasions outperformed more classical scoring functions in
a variety of benchmark experiments (Kinnings et al., 2011b; Li et al.,
2011; Ballester et al., 2012; Ding et al., 2013; Durrant et al., 2013).
Recently these differences in scoring performance have been
reviewed in depth (Ain et al., 2015).

Taken together, these observations indicate that docking
performance can be tuned for different tasks. The different
approaches and the scoring functions optimal for the different
tasks may have some overlap as illustrated in Fig. 1, but the extent
of this overlap is not known in detail.

Generally speaking, machine learning is the process of getting
computers to perform actions without being explicitly pro-
grammed. In supervised machine learning, the computer algo-
rithm is presented with a task (here docking) and the results
compared with the provided correct results. The error is
formulated mathematically in a loss or cost function which
calculates how wrong the outcome is. The terms and parameters of
the algorithm are then stepwise optimized to minimize the loss
function (Mohri et al., 2012). In this study a machine learning
approach is used to re-optimize the weights for the scoring
function of Smina (Koes et al., 2013) using a loss function
calculated from the pose prediction accuracy of a small curated
cross docking data set.

2. Computational methods

2.1. Train and test sets

A database of receptor-ligand complexes for cross docking was
manually curated using the protein data bank (PDB) id’s from the
Astex diverse data set (Hartshorn et al., 2007) with known binding
affinities determined as Ki/Kd in the Binding MOAD (Hu et al.,
2005). All the PDB files matching the UniProtID of the receptor
from the Astex set were downloaded from the protein data bank
and structurally aligned. Hydrogen atoms were added and the X-
ray model split into receptor, water molecules, co-factors and

Fig. 1. Aims of docking and scoring. A: Binding mode prediction as it will be used in
docking and lead optimization studies. B: Affinity Prediction as it will be used in the
assessment of proposed novel compounds. C: Binding classification for the use in in
silico based virtual library screening and development of focused libraries for high
throughput screening. D: The Holy Grail of scoring functions: A scoring function
that can do all three things optimal.
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